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Abstract
Objectives  Machine learning models are a promising, yet underutilized tool within the mindfulness field. Accordingly, this 
work aimed to provide a practical introduction to key machine learning concepts through an illustrative investigation of the 
association between at-home mindfulness exercise compliance and stress reduction. To further interrogate the currently 
inconclusive nature of the compliance-outcome association within the mindfulness literature, the illustrative example lever-
aged a suite of machine learning techniques to highlight the unique affordances and perspectives of the predictive framework.
Methods  Foundational information regarding facets of the machine learning analytical process, including model types, 
data preprocessing, feature engineering, validation, performance evaluation, and model introspection, was presented. With 
emphasis on providing details and justifications regarding modeling decisions along the way, the work systematically applied 
these introduced concepts to a real-world data example. This permitted an opportunity to build, introspect, and derive insight 
from a model tasked to explore dynamics underlying patient compliance to mindfulness exercises within a web-based deliv-
ery setting.
Results  The constructed machine learning models suggested a moderate correlation of compliance with post-intervention 
reliable change in stress (r = 0.349 ± 0.018). Model introspection tools further revealed that a combination of both high 
consistency and high overall average compliance predicts a trend toward greater reduction in self-reported stress.
Conclusions  Results of the illustrative study suggested that compliance, in pattern and absolute magnitude, is a significant 
contributor to online mindfulness therapy outcomes. Moreover, modeling efforts implicate machine learning as a uniquely 
beneficial paradigm with which to explore nuanced questions in the mindfulness research space.

Keywords  Mindfulness · Applied machine learning · Stress · Online intervention · Tutorial

Mental health disorders, most commonly anxiety and depres-
sion, affect over 700 million people worldwide and are asso-
ciated with social, demographic, and economic hardships 
(Bartel & Taubman, 1986; Titov et al., 2019). Despite pre-
vious attempts to expand access to mental health care, less 

than half of patients who suffer from mental illness report 
seeking evidence-based treatment (Titov et al., 2019). Some 
patients wish to seek treatment for their disorders, but are 
unable to do so because of financial constraints or the limited 
availability of psychological services (American Academy 
of Child and Adolescent Psychiatry Committee on Health 
Care Access and Economics Task Force on Mental Health, 
2009). Others choose not to seek treatment for reasons 
including social stigma, preferences to self-manage, and a 
limited awareness of both their mental illness and the poten-
tial benefits to therapy (Titov et al., 2019). While the global 
shortage of therapists and psychiatrists is expected to remain 
constant, access to technologies (including the Internet and 
the increasingly ubiquitous smartphone) has increased stead-
ily over the past decade, engendering questions relating to 
the potential applications of existing digital platforms in 

 *	 Damien Lekkas 
	 Damien.Lekkas.GR@dartmouth.edu

1	 Center for Technology and Behavioral Health, Geisel School 
of Medicine, Dartmouth College, 46 Centerra Parkway, Suite 
300, Lebanon, NH 03766, USA

2	 Quantitative Biomedical Sciences Program, Dartmouth 
College, Lebanon, USA

3	 Department of Biomedical Data Science, Geisel School 
of Medicine, Dartmouth College, Lebanon, USA

/ Published online: 27 August 2021

Mindfulness (2021) 12:2519–2534

http://orcid.org/0000-0002-6995-9223
http://orcid.org/0000-0002-9164-4973
http://orcid.org/0000-0003-3943-5768
http://orcid.org/0000-0002-8832-4741
http://crossmark.crossref.org/dialog/?doi=10.1007/s12671-021-01723-4&domain=pdf


1 3

addressing current barriers to mental health treatment (Tal 
& Torous, 2017). Current app-based treatments for anxiety 
and depression have made significant progress in distribut-
ing resources and interventions to those in need, regardless 
of their location, availability, or socioeconomic status (Tal 
& Torous, 2017). Furthermore, many digital mental health 
interventions allow users to remain anonymous, which may 
help alleviate the fear and embarrassment that comes with 
seeking therapy (Bradford & Rickwood, 2014).

One prominent example of this translation of mental 
healthcare paradigms into the digital forum comes from 
efforts in the field of mindfulness. Mindfulness-based stress 
reduction (MBSR) and its mindfulness-based cognitive ther-
apy (MBCT) derivative are secular therapeutic interventions 
that use meditation, bodily awareness, and the non-judgmen-
tal accepting of the present experience in order to reduce 
stress, anxiety, depression, and pain (Grossman et al., 2004). 
Mindfulness interventions aim to restore positive emotions 
and a calm mental state in patients who suffer from psycho-
somatic disorders (Zhu et al., 2017). Traditional treatments 
involve 8-week programs consisting of both weekly group 
classes led by a certified instructor and at-home mindfulness 
during which participants employ mindfulness meditation 
themselves (Huberty et al., 2019). Although current studies 
suggest that these mindfulness intervention programs are 
effective at reducing stress and anxiety, these programs can 
be cost-prohibitive and inaccessible (Mrazek et al., 2019).

Given the advent of digital app-based treatments for stress 
and anxiety, many studies have analyzed the efficacy of digi-
tal mindfulness intervention apps in treating patients with a 
broad range of psychological disorders, including anxiety, 
depression, and schizophrenia (Huberty et al., 2019). Mind-
fulness meditation mobile apps such as Calm and Head-
Space found that participants who used the app daily showed 
significantly lower levels of stress and significantly higher 
levels of mindfulness and self-compassion than the con-
trol group (Economides et al., 2018; Huberty et al., 2019). 
Early benchmarking of such smartphone mindfulness apps 
suggests that they increase patient resilience and have the 
potential to become effective delivery mediums for mindful-
ness programs when compared with traditional in-person 
methods (Mrazek et al., 2019). All told, the current literature 
reflects a promising future for app-based mindfulness treat-
ments which carry the additional benefits of lower cost and 
greater accessibility.

In recent years, the efficacy of digital mental health 
interventions (both app-based and online) has been further 
probed by leveraging the advantages of machine learn-
ing methodologies to consider the dynamic and statistical 
properties of the temporally collected data that tends to 
characterize these efforts (Triantafyllidis & Tsanas, 2019). 
More specifically, machine learning has been used to inves-
tigate app-based and online health interventions that target 

depression management (Burns et al., 2011), stress man-
agement (Morrison et al., 2017), and weight loss (Manuvi-
nakurike et al., 2014). Unfortunately, however, despite its 
broader success in mental health application, little to no 
research has utilized machine learning to interrogate out-
comes, probe dynamics, or assess the efficacy of online-
based mindfulness interventions.

In an effort to offer a potential expansion to the analytical 
toolkit within the mindfulness space, this paper will serve 
as a practical primer to introduce mindfulness researchers to 
the paradigm of machine learning and demonstrate, through 
a real-world data-driven example, the potential utility of 
machine learning to address more complex questions within 
the field of mindfulness. With a focus on online-based inter-
vention research, this work will demonstrate how to inter-
rogate the results of a mindfulness intervention study via the 
construction of a hypothesis-driven machine learning model. 
The work will thus begin by providing an explanation of 
machine learning, key components of the modeling architec-
ture and process, as well as the major decisions faced from 
initial data handling to the interpretation of results. Given 
the depth and complexities across this broad class of mod-
els, the work is not meant to be exhaustive in its treatment, 
rather it is designed to provide mindfulness researchers with 
a baseline understanding of modeling construction, choice, 
assessment, and interpretation to foster and encourage future 
work of its kind. Accordingly, the remainder of the intro-
duction covers (i) types of models, (ii) pre-processing and 
missingness of data, (iii) feature engineering, (iv) external 
validation methods, (v) model selection, (vi) model evalu-
ation, and (vii) model introspection, to provide background 
and context into the decisions that go into the construction 
of a machine learning framework as well as information on 
unique strengths of the approach as compared to more tra-
ditional statistical models.

Practical Machine Learning

Machine Learning: a Definition

Machine learning can be broadly defined as a subtype of 
artificial intelligence that allows for computers to both learn 
and think on their own (Alzubi et al., 2018).

Types of Models

Machine learning approaches can be broken into three major 
methods: (i) supervised learning, (ii) unsupervised learn-
ing, and (iii) semi-supervised learning. Supervised learning 
learns the relationship of input data and its corresponding 
label and can be broken down further into instances where 
the model seeks to correctly predict either a categorical label 
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(classification) or a continuous numerical value (regression). 
Unsupervised learning seeks to understand the inherent 
structure of input data without predefined labels, such as 
mapping conversation topics in mental health-related online 
forums (Grant et al., 2018). Semi-supervised learning com-
bines the two aforementioned methods by utilizing mod-
els with both labeled and unlabeled data (Zhu & Goldberg, 
2009).

Pre‑processing and Missingness of Data

Particular consideration must be given to data that is going 
to serve as input to a machine learning model. First, data 
types must be interrogated to ensure they are in a format 
that reflects the research goals or hypotheses. Following data 
type consideration, it is important to address how individual 
features may influence the model. To avoid unbalanced influ-
ence of features on a model, intra-feature standardization 
or intra-feature value range transformation is encouraged to 
ensure consistency in model influence across the features.

Additionally, missing data must be handled prior to 
implementing a machine learning algorithm. There are three 
types of missing data to consider: missing completely at 
random (MCAR), missing at random (MAR), and missing 
not at random (MNAR). MCAR refers to instances when 
the probability of the data being missing is random, and 
thus, there is no relationship between missing data and any 
other value in the data. MAR refers to instances where the 
probability of the data being missing depends on the other 
collected variables, but is not related to the actual missing 
value. Lastly, MNAR refers to instances where the charac-
teristics of the missing data do not fall under the MCAR 
or MAR categories, and modeling of the missing data is 
required to avoid bias (Kang, 2013). In instances where 
dropping participants with missing information is inappro-
priate, one may also replace missing values with an estimate 
(imputation) to conserve sample size and overall input data 
information. Imputation can take on many forms depending 
on the type and degree of missingness in the data. A simple 
replacement method from a pre-existing data point (single 
imputation) may suffice, while more complex problems may 
call for the implementation of simulation models to consider 
the uncertainty involved in imputing a value (multiple impu-
tation) (Jerez et al., 2010).

Feature Engineering

Following pre-processing and imputation of the raw data, 
one must consider what information is going to serve as 
the independent variables (features) of the machine learning 
model. Transformation of the raw data may be required to 
better address the underlying problem the predictive model 
is trying to solve. Methods of feature engineering on the 

raw data may include calculations of statistical properties 
(e.g., arithmetic mean of a feature from the original data) 
(Maxhuni et al., 2016), alterations of distribution (e.g., log 
transformation), or creation of new features that are derived 
from a combination of more than one existing feature (e.g., 
the difference between values of two existing features). Ulti-
mately, feature engineering can be leveraged to enhance 
both performance and interpretability of a machine learn-
ing model.

External Validation Methods

Consideration on how to best leverage a dataset based on 
the number of participants and the amount of information 
collected on those participants introduces another unique 
advantage to machine learning. Unlike traditional statisti-
cal methods, which are reliant on the entirety of a study 
population to inform a particular model, machine learning 
allows for a training phase and a test phase. The test phase 
reflects the model’s performance on a subset of participants 
previously unseen by the model, increasing external valid-
ity. Considerations for how to split data is generally context 
dependent. In general, a large study population may allow 
for a simple separation of the data into a training set and a 
test set. The training set is then additionally partitioned into 
a training set and a validation set. The training set allows for 
model fitting, and the validation set allows for evaluation of 
model performance. The test set is the only portion of the 
data suitable for reporting the final model performance met-
ric. However, in instances where a study population may be 
too small for a traditional train/test split, an additional par-
titioning technique, k-fold cross-validation, can be utilized. 
k-fold cross-validation consists of randomly partitioning the 
data into k groups, where the model is fit on k-1 groups 
and predictions are generated on the last group of data. A 
particular instance of k-fold cross-validation, leave-one-out 
cross-validation, partitions the data into k groups, where k 
reflects the number of subjects (Grimmer et al., 2021).

Model Selection

Model selection is a process that requires consideration of 
the features utilized in the model, as well as the question 
being asked of the data. Models can vary based on out-
come application (e.g., regression vs. classification), the 
parameters that control an aspect of the algorithm, known 
as hyperparameters, and computational efficiency (Grim-
mer et al., 2021). The segmentation of all machine learning 
algorithms can be highly heterogeneous; thus, this paper will 
focus on a select group of model types. Tree-based models 
are a commonly used model type for both classification and 
regression. Tree-based methods can be broadly broken up 
into decision trees, random forests, boosting, and Bayesian 
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additive regression trees (BARTs). A tree-based approach 
divides input data into smaller, uniform groups based on a 
measure that maximizes separation of the data (Loh, 2011). 
Tree-based approaches are useful for handling diverse input 
data, and are computationally efficient (Kern et al., 2019). 
Kernel separators, such as support vector machines (SVMs), 
are another commonly used model type in both classifica-
tion and regression problems. SVMs are based on the crea-
tion of a line or hyperplane which separates the data into 
distinct classes (Dreiseitl et al., 2001). Cluster models are 
generally implemented in an unsupervised machine learning 
framework. Cluster models seek to identify latent topics or 
groups within a dataset. Partition clustering utilizes methods 
to partition the data and then assess the similarity between 
those formed groups, whereas hierarchical clustering com-
bines data points into clusters and repeats this process on the 
formed clusters (Kassambara, 2017; Saxena et al., 2017). 
Artificial neural networks (ANNs) were inspired by the 
neurophysiology of information transmission and consist of 
connections of neurons with weights associated with those 
connections. While ANNs have been adopted in many areas 
of research, they are more computationally expensive and 
difficult to interpret than the aforementioned models (Dre-
iseitl et al., 2001; Shanmuganathan & Samarasinghe, 2016).

Model Evaluation

Although model selection is important based on the research 
question being asked and the type of data being used in the 
model, the decision on what model performance metric to 
examine and report requires equal consideration. Further, 
the type of machine learning model influences the evalua-
tion metrics that can be reported. While difficult to provide 
an exhaustive list of model algorithms and their respec-
tive model evaluation metrics, there are a few commonly 
reported evaluation metrics that should be discussed. In a 
classification model, area under the receiver operating char-
acteristic curve (AUROC) is commonly reported (Sokolova 
& Lapalme, 2009). This metric calculates the area under the 
plot formed by the true-positive rate (sensitivity) against the 
false-positive rate (1 = specificity). In instances of regres-
sion models, the mean squared error (MSE) and the mean 
absolute error (MAE) is used. The MSE reflects the degree 
to which the regression line fits the sample data, so in a 
machine learning framework, the regression line learned 
from the training set can be applied to the test set to gauge 
the difference in predicted versus actual outcome scores. 
The MAE functions similarly, but considers the sum of the 
absolute difference between actual and predicted values, 
without consideration for directionality. Lastly, the coeffi-
cient of determination (R2) is commonly reported in regres-
sion models, which evaluates how much of the observed 
variation in the data is explained by the machine learning 

model (Handelman et al., 2019). An important distinction 
between the utilization of R2 and MSE/MAE is that while 
an R2 coefficient can be generally interpreted across studies 
or research disciplines, MSE and MAE are problem spe-
cific. For example, an encouraging MSE value in one field 
of research may reflect a very poor-performing model in 
another area of research.

Model Introspection

Machine learning allows for model introspection, which can 
aid in the interpretability of both a model’s performance 
as well as the respective influence of the features on the 
model’s performance. For example, in classification mod-
els, feature importance refers to the individual contribution 
of a given feature on the model classifier. There are a few 
commonly used methods to evaluate feature importance 
in a machine learning model. Local interpretable model-
agnostic explanations (LIME) (Ribeiro et al., 2016) offers 
information on features that were important for classifying 
a specific observation. A similar method, Shapley Additive 
Explanations (SHAP), which extends from Shapley values 
introduced in cooperative game theory, allows for an inter-
pretation of features based on how their respective direc-
tionality and magnitude influence the outcome prediction 
(Lundberg et al., 2019).

Illustrative Study Example

Many factors have been found to contribute to the efficacy 
of mindfulness programs in reducing symptoms of stress 
and anxiety. One such factor is patient compliance—the 
degree to which a patient correctly and consistently follows 
treatment protocol. This includes attendance at instructor-
led sessions, participation in weekly group discussions, 
adherence to daily mindfulness exercises at home, and/or 
completion of assigned homework (e.g., journal entries and 
self-reflections) (de Vibe et al., 2013). Generally, patient 
compliance is highest during the first few weeks of mind-
fulness treatment, during which most patients perceive the 
mindfulness sessions to be easy and immediately gratifying 
(Lymeus et al., 2019). Once this novelty wears off, however, 
patient compliance tends to steadily decrease. Many have 
sought ways of improving patient compliance in mindfulness 
intervention therapies, with online and app-based delivery 
methods offering one potential avenue given their absence 
of in-person components (Yeo et al., 2019).

It is unclear, however, whether patient compliance alone 
is a reliable predictor of treatment outcome. Some studies 
have shown that higher levels of patient compliance lead to 
greater reduction in stress and anxiety (Davis et al., 2007; 
de Vibe et al., 2013; Quach et al., 2017), while others have 
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found no significant correlation between compliance and 
patient outcome (Toneatto & Nguyen, 2007). Studies that 
address the compliance-outcome relationship typically 
model compliance as a single summative metric (e.g., the 
average number of completed exercises over the duration of 
the study) or in terms of some threshold of absolute magni-
tude for binary treatment (de Vibe et al., 2013; Lengacher 
et al., 2009). In either case, there is a failure to address 
trends and trajectories, such as how regularly a subject par-
ticipates. There is precedent to assume, based on studies that 
have observed deterioration over time, that compliance is not 
a set constant, but rather a complex and dynamic facet of 
therapy engagement that would benefit from more rigorous, 
multivariable operationalization. Moreover, this observed 
intra-participant variability in behavior suggests that pat-
terns of compliance may also play an important role in the 
analysis and interpretation of intervention outcomes. Despite 
such ubiquitous observations, there is a lack of interroga-
tion in the literature that deals with the temporal patterns of 
compliance behavior. Notably, this temporal dimension can 
be operationalized in terms of consistency—how routine a 
patient is with therapy engagement—to more completely 
encapsulate the dynamics of a compliance-outcome asso-
ciation. To the authors’ knowledge, no study has explored 
the mindfulness compliance-outcome association in a multi-
metric framework, nor has there been an analysis that applies 
notions of consistency to characterize time-based trends in 
mindfulness exercise engagement.

To provide a practical illustration for the application of 
machine learning to the field of mindfulness, the current 
work will utilize data produced from a previous research 
endeavor that implemented a web-based mindfulness course 
(Krusche et al., 2012b). The primary goal of the past study 
was to test feasibility in delivering a mindfulness-based 
intervention online. Krusche et al. (2012b) reported a sig-
nificant decrease in subjects’ perceived stress as a result of 
participation in the intervention; however, given the aim of 
the work, data analysis relied on basic descriptive statis-
tics and, most notably, did not examine how mindfulness 
exercise practice (herein framed as compliance) affected the 
reported change in perceived stress. With the dataset pub-
licly available, there is a valuable opportunity to expand their 
original analysis and interrogate the dynamics and impact 
of participant compliance on perceived stress outcome 
using a predictive machine learning framework. Serving to 
illustrate the analytical process of machine learning-based 
modeling, this study was guided by the following questions: 
(i) Can compliance to mindfulness intervention exercises 
significantly predict reliable change (Jacobson et al., 1984) 
in perceived stress from pre- to long-term follow-up during 
a digital treatment? (ii) What are the relative contributions 
of compliance-based metrics in the prediction of reliable 
change in perceived stress from pre- to long-term follow-up?

Method

Participants

Participants (N = 100, 26% male, 74% female, average 
age = 48 years) were self-selected for an 8-week prelimi-
nary evaluation of an online mindfulness stress reduction 
course consisting of ten distinct interactive sessions led by 
two instructors. Treatment consisted of participation in the 
online mindfulness course and was supplemented by volun-
tary, unsupervised exercises throughout each week.

Procedures

The data used as the basis for the example study originated 
from a previous research effort assessing the efficacy of an 
online mindfulness course (Krusche et al., 2012b) and made 
publicly available as a supplement (Krusche et al., 2012a). 
As discussed in the original work, the online intervention 
combined elements of both MBSR and MBCT into an 
8-week course run by the Mental Health Foundation and 
Wellmind Media and developed under the guidance of lead-
ing UK mindfulness instructors. The course had ten interac-
tive, instructor-led sessions where participants were trained 
in formal meditation techniques, with additional training 
and practice through website-accessible video guides and 
exercise assignments. Each week, participants were asked 
to practice at least one formal exercise using supplied audio 
and video clips. Exercise durations varied in type and length 
with frequency of practice quantified via weekly self-report 
questionnaire. While the course ran for a total of 8 weeks, 
participants had the option of taking a break and resuming 
from where they left off upon return. This resulted in the 
course lasting a minimum of 4 weeks for some individuals.

Measures

Outcome

The type of outcome (dependent variable), whether con-
tinuous, ordinal, binary, or otherwise, dictates the class of 
machine learning model that is appropriate to employ. For 
the current data, the Perceived Stress Scale (PSS) (Cohen 
et al., 1983) was utilized as the outcome metric to quantify 
self-assessed stress levels before, immediately after, and 
1 month after completion of the online course. The PSS is 
the most prevalent and widely accepted measure of personal 
stress perception and has evidenced good internal consist-
ency reliability (Cohen et al., 1983). It consists of a ten-
item survey allowing for a 5-point (0–4) range of response 
with “4” denoting the highest level of stress perception. The 
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minimum stress score is therefore 0, and the maximum stress 
score is 40. The PSS is continuous; therefore, a regression-
based machine learning model would be the clear choice 
here; however, note that if there is a theoretically justifiable 
reason to stratify a continuous outcome by informed cut-
points (e.g., < 20 = “low”; ≥ 20 = “high”), then a binary or 
multi-class classification machine learning approach could 
be leveraged instead.

Self‑reported Compliance

Any subset of the raw data that is not the outcome of interest 
can potentially serve as predictors or features (independent 
variables) of a machine learning model. Importantly, as will 
be discussed under “Data Analyses”, the variables that com-
prise the raw data can also serve (in virtually any mathemati-
cal combination) as the basis for the creation of additional, 
derivative features in a machine learning model.

In the study data, for each week of the course, the par-
ticipants were instructed to practice at least one mindfulness 
exercise by utilizing the provided video and audio clips. In 
an effort to stratify individuals based on the frequency of 
practice outside of the course sessions, participants were 
asked to review and score the completion/frequency of each 
of the activities they performed. Compliance in terms of a 
binary status of completion or as a frequency of exercise 
practice was therefore dependent on the nature of the exer-
cise as well as the structure of the associated self-report 
questionnaire item as discussed in detail below. This resulted 
in a maximum of 12 categorical measures of compliance 
idiosyncratic in range to each exercise. Exercise compliance 
was measured in one of four types of scales. The first con-
sisted of a 1–4 scale indicating the amount of practice across 
the week: (1) every day/time, (2) most days/times, (3) once 
or twice/few times, and (4) never/not at all. An example 
prompt is “During week 2, how often have you been practic-
ing Mindful Breathing?” In total, 6 exercises had compliance 
measured in this format. These include “Body Scan,” “Rou-
tine Activity,” “Mindful Movement,” “Mindful Breathing,” 
“Sitting Meditation,” and “Chosen Practice.” The second 
scale was very similar to the first and consisted of a 1–4 
metric: (1) three times a day, (2) at least once a day, (3) on 
some days, and (4) not at all. An example prompt is “Dur-
ing week 3, how often have you been practicing the 3 min 
Breathing Space?” In total, 2 exercises had compliance 
measured in this format. These include “Breathing Space 
(Week 3)” and “Breathing Space (Week 4).” The third scale 
was measured in the range of 1–3 indicating full (1 = yes), 
partial (2 = sometimes), or no (3 = no) compliance. Only 1 
exercise was measured in this manner. “Stress Awareness” 
had the prompt of “During week 3, your assignment was to 
be aware of your reactions to stress, without trying to change 
them. Did you manage to do this?” Lastly, the fourth scale is 

measured as a binary (1) yes/(2) no. In total, 3 exercises were 
measured this way—“Mindful Meal,” “Event Awareness,” 
and “Activity Awareness.” An example prompt is “During 
week 2, have you been filling out your Event Awareness 
Journal?” With these scales, higher values denote lower 
compliance. Supplementary Table S1 presents a summary 
of all self-report questionnaire items along with their associ-
ated scales and schedules.

Data Analyses

Developing the Model Outcome

With a clear definition of the research goals and hypotheses, 
it is common to redefine or restructure the collected data 
toward a more germane operationalization of the measured 
outcome. In this example, as noted in “Measures” above, 
the primary outcome of the mindfulness intervention study 
was the PSS assessed at three distinct time points throughout 
the course. As the current endeavor is interested in assessing 
response to or “success of” the online mindfulness course 
as a function of compliance, reframing of the empirical out-
comes into a useful outcome to predict within a machine 
learning approach is warranted.

Using the PSS-derived scores from before (PSSBF) and 
1 month after (PSSOMO) completion of the course, a differ-
ence stress score was calculated to quantify the long-term 
change in perceived stress as a result of participation in the 
digital mindfulness intervention. This can be expressed sim-
ply as DIFF = PSSOMO − PSSBF. In an effort to more robustly 
capture response to intervention, the reliable change index 
(RCI) (Jacobson et al., 1984) was also measured and lever-
aged as the primary outcome metric of interest. The RCI is a 
psychometric criterion which accounts for the measurement 
reliability. While it has been shown to be a statistically reli-
able operationalization of improvement, it is important to 
note that notions of clinical reliability are not inherent to 
its formulation. The RCI is a ratio with the numerator the 
difference score between measures at two time points and 
the denominator the standard error of measurement of this 
difference (SEDIFF). From above, the ratio can be expressed 
as, DIFF∕SE

DIFF
 . The standard error of the difference itself 

is related to the standard error of measurement (SEM) as 
√

2 × (SEM)2 , with SEM derived from the product of the 
standard deviation across all difference scores ( �

DIFFS
 ) and 

the intraclass correlation coefficient (ICC) of the PSS. For 
the calculations of RCI in this study, an ICC value of 0.66 
was specifically selected based on the results of a rigorous 
and comprehensive empirical study on the generalizability 
and psychometric properties of the PSS (Miller et al., 2021). 
Thus, SEM = �

DIFFS
×
√

1 − 0.66 toward the final calcula-
tion of RCI.
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The resulting utility of any predictive machine learning 
model, whether in terms of practical performance and/or 
theoretical insight, is tied to how the researcher chooses to 
define what the model is trying to predict. It is thus impor-
tant to ensure that the outcome sufficiently represents, in 
terms of both field-guided theory and statistical rigor, the 
phenomenology surrounding the research aims. For this 
illustrative example, the transformation of raw PSS scores 
into differences scores represents pointed alignment with the 
study aims, while subsequent modification of these differ-
ence scores into measures of reliable change represents an 
effort to strengthen the predictive model through previous 
empirical work and statistical refinement. Comparing signif-
icance of change rather than absolute difference ultimately 
allows for the separation of variability due to a change from 
variability due to measurement error. While not always pos-
sible to the same degree as illustrated for this study, it is best 
practice to strive for a clear and justifiable representation of 
a predictive model’s outcome.

Pre‑processing and Missingness of Data

Following selection of an appropriate outcome, a researcher 
should turn to introspection of the data more broadly. As 
any study within mindfulness research tends to collect vari-
ous types of data across a number of subjects over a pro-
longed period of time (e.g., studies involving participation 
in mindfulness-based therapies), it is likely that the data 
will require some “cleaning” or systematic modification to 
ensure proper compatibility with predictive models. Incon-
sistent or errant representations of values or variables (e.g., a 
numeric placeholder for NA or a nominal variable treated as 
ordinal) should be addressed. Following this, two important 
checks regarding missingness and inconsistency in variable 
value ranges must be performed.

In the example data, simple calculations show that there 
is an overall missingness rate of 2.8% with 10% (N = 10) 
of participants missing at least one data point. This can be 
considered a low rate of missingness; however, it is rarely 
best practice to simply drop subjects with missing informa-
tion. Performing imputation on the data is a popular option; 
however, depending on the pattern of missingness and impu-
tation strategy, such an approach can bias a model that relies 
on the imputed data to inform prediction. A simple way to 
assess the pattern of missingness is to run Little’s test for 
MCAR (Little, 1988) using the naniar package in R (Tierney 
et al., 2021). For the example study data, the model fails to 
reject the null hypothesis that the data is MCAR (p = 0.169), 
indicating that the use of imputation should have a minimal 
to no bias on subsequent modeling outcomes. Coupled with 
a low missingness rate, it is well justified to proceed confi-
dently with imputation and downstream analyses.

Following missingness analysis, the example performs 
multiple imputation by random forest (Tang & Ishwaran, 
2017) to impute the original dataset into ten discrete sam-
ple datasets. The process of this algorithm within multiple 
imputation operates similarly in principle to the tree-based 
machine learning model of the same name. Briefly, the algo-
rithm operates by first imputing all of the missing data using 
the mean (or some other basic statistical property), then for 
each variable that had missing values, it fits a random for-
est model (a set of decision trees) on the non-missing frac-
tion of the data to ultimately predict the missing fraction. 
The process repeats a set number of times with each itera-
tion boasting a random forest model that is trained on more 
representative derivations of the data. Some of its notable 
strengths when leveraged to impute missing data, compared 
with default parametric regression–based models for multi-
ple imputation, are that it does not rely on any distributional 
assumptions of the data, can accommodate non-linear rela-
tions and interactions between variables, and can tolerate 
issues of collinearity among variables (Shah et al., 2014).

The exact method of imputation as well as the number 
of imputed datasets to derive is left to the discretion of the 
researcher. It is critical, however, that there is an awareness 
of the limitations to, and assumptions of, each method when 
selecting one to employ. In addition, analysis across a larger 
number of imputed versions of the original data generally 
results in higher stability and therefore confidence in model 
results. This is to say that the downstream modeling and 
analysis procedures must be conducted on each imputed 
dataset separately with some plan to reconcile and/or com-
bine the findings of each imputed data-driven model after 
the fact. Accordingly, all subsequent data cleaning and fea-
ture engineering for this study was performed separately on 
each imputed dataset.

Turning to inconsistencies in the range of values across 
variables, as discussed in “Measures,” the ranges for self-
report compliance questionnaire items were not consistent 
across all exercises. Variables that vary in type or range can 
impact the ability of a machine learning model to properly 
utilize the data; thus, it is usually safer to ensure that all data 
is within-variable standardized. For the example, all compli-
ance measures were individually standardized such that each 
feature had μ = 0 and σ = 1.

Feature Engineering

The goal of this study is to interrogate the impact of com-
pliance to an online mindfulness intervention on reliable 
change in perceived stress. Toward this goal, feature engi-
neering can be viewed as a creative endeavor that seeks to 
derive abstractions of the data that operationalize and/or 
parse the general phenomenon of interest in different and 
potentially informative ways. Compliance is the general 
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phenomenon of interest, yet notions of compliance can 
extend beyond the simple “completion rates” that offer no 
temporal context or nuanced patterns of behavior. To look at 
the impact of some more particular aspects of mindfulness 
compliance on perceived stress outcome within a modeling 
framework, eight derivative variables (or features) of com-
pliance were created from the raw data:

(i) Overall average compliance: It is customary in 
machine learning modeling to employ features that are 
statistical summaries of the raw data. To holistically cap-
ture the magnitude (or degree) of self-report compliance, 
this study averaged the normalized compliance scores 
across all 12 activities. This quantity is akin to a gen-
eral, overall compliance rate, for example in studies that 
measure compliance as the number of days a participant 
engaged in a mindfulness therapy course out of the total 
number of days of enrollment in the course.
(ii) Standard deviation of overall compliance: Similar 
to (i), the standard deviation of compliance across all 
12 activities is a way to broadly quantify compliance; 
however, this metric is specifically concerned with the 
general spread of compliance (being the square root of 
the variance) across the duration of the study rather than 
the average magnitude. Note that neither (i) or (ii) can 
address patterns or trends in compliance throughout the 
study participation—they are both strictly summative.
(iii–vi) Mean weekly compliance (for each of weeks 
1–4 where data was collected): Feature engineering can 
involve quantities that result from the compartmentaliza-
tion of data into meaningful bins. Because the raw data 
for this study provides self-report compliance across 
mindfulness exercises that occurred in distinct weeks, 
parsing compliance by time is one convenient and poten-
tially useful way to design the building blocks with which 
to assess subject-specific patterns and trends (see features 
(vii) and (viii)). For this study, the mean weekly compli-
ance for an individual is the average of the normalized 
self-report compliance scores across the three assigned 
exercises that define that week. (See Supplementary 
Table S1 for a complete list of exercises and their respec-
tive questionnaire items.)
(vii) Root mean square of successive differences (RMSSD) 
(Von Neumann et al., 1941): The self-report questionnaire 
for subject compliance with weekly assigned mindfulness 
activity spanned a total of 12 activities across 4 weeks 
with 3 activities belonging to a particular week. Using the 
average of the normalized self-report compliance meas-
ures within each week (features (iii)–(vi)), the RMSSD is 
calculated as 

√

(c
w2−cw1)

2+(c
w3−cw2)

2+(c
w4−cw3)

2

3
 , where c

wt
 is 

the mean normalized compliance score across activities 
in week t. This feature is meant to serve as a summative 

descriptive statistical quantity that is the primary opera-
tionalization of compliance consistency. Compliance 
consistency (or hereafter just “consistency”) is an opera-
tionalization of how dynamic/variable a subject is in 
terms of their participation in, and adherence to, assigned 
weekly mindfulness exercises throughout the study. A 
subject with higher consistency exhibits lower fluctua-
tions in compliance through time; however, this metric by 
itself does not speak to the magnitude of this compliance 
(i.e., two subjects can have identical consistency with 
vastly different overall magnitudes. See Fig. 1 for an 
intuitive illustration of this difference.
(viii) Slope of overall average compliance: A predictive 
feature for machine learning can represent an outcome 
from a statistical model. For this example, operationali-
zation of the trajectory in self-reported compliance over 
time can be realized through a simple linear model where 
weekly mean compliance measures for a subject (features 
(iii)–(vi)) are regressed on time (t = 1, 2, 3, 4). The result-
ing slope, m, of this model (Y ~ mX, where X = [1, 2, 3, 
4] and Y = [c

w1 , cw2 , cw3, cw4 ]) thus represents the overall 
trend in average compliance across the 4 weeks.

Model Selection and Implementation

An extreme gradient boosted machine learning model (Chen 
& Guestrin, 2016) (xgbTree) with ten-times repeated tenfold 
cross-validation on each of the ten imputed datasets was 
constructed, and hyperparameter was tuned to maximize 
performance based on variance explained (R2) using grid 
search with the caret R package to predict PSS RCI from the 
eight derived features above. Example code in R to run the 
model on one imputed dataset through the caret package is 
provided for reference in Supplementary Fig. 1. Interested 
readers are highly encouraged to consult the comprehen-
sive online resource for caret written by the creator, Max 
Kuhn, for further details and examples (Kuhn, 2019). The 
xgbTree algorithm operates by constructing decision trees 
(akin to random forest) in a sequential manner where each 
subsequent tree in the sequence learns from the mistakes of 
its predecessor and updates the residual errors accordingly. 
Intuitively, each decision point along a tree can be thought 
of as a classification of data points based on the value of one 
independent variable (or predictor) that describes that data 
point. One key point is that, as with any “boosting” model, 
the process converts what would at baseline be a set of weak 
learners into one final strong learner. The decision to utilize 
this model (over multivariable linear regression or a kernel 
separator, for example) was based on its often-cited high 
performance and execution speed in a variety of disparate 
machine learning tasks and research contexts. As an added 
benefit, the model can handle missing data by treating it 
as a unique value to inform prediction. While imputation 
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was used to handle missing values for this example, in other 
cases where imputation may not be as appropriate or justi-
fied (e.g., high missingness rates, data is not missing at ran-
dom), extreme gradient boosted models can be employed on 
the data as-is without the need to resort to subject removal 
or biasing imputation methodologies.

Model Evaluation

Given that utilized xgbTree models are regression models, 
performance evaluation and subsequent interpretation for 
this example is based on the Pearson correlation (r) which 
is the square root of variance explained (R2).

Relative Feature Importance

Computation of relative feature importance is performed one 
feature at a time where MAE is measured before and after 
shuffling the values associated with the feature. This disrupts 
the association between the outcome and the feature, thus 
allowing for a comparison of prediction error before and 
after perturbation. Larger increases in error subsequent to 
shuffling indicate higher importance. Each feature is com-
pared based on this magnitude of increase to arrive at a rela-
tive ranking of importance. The comparative metric for a 
feature thus indicates the factor by which the model’s predic-
tion error increases when that feature’s values are modified.

Model Introspection with LIME

The LIME is a prominent model-agnostic explanatory algo-
rithm in machine learning that randomly perturbs the values 
of the predictive features to appreciate how model prediction 
changes in response (Ribeiro et al., 2016). When performed 
iteratively across all data points, and in conjunction with 
appropriate visualization tools, the resulting prediction val-
ues can be utilized to explain “localized surfaces” of the 
model prediction landscape. As derived and illustrated in 
Friedman (1999), a partial dependence plot (PDP) is one 
useful way of visualizing this “black box” introspection of 
machine learning model prediction. More specifically, it 
allows for an intuitive presentation of the individual or mar-
ginal effect of one or two simultaneous features on the pre-
dicted value of the outcome (Friedman, 1999). In this man-
ner, PDPs serve to more thoroughly interrogate aspects of 
mindfulness exercise compliance and how they are expected 
to influence stress outcomes.

For the example study, the iml R package (Molnar et al., 
2018) was used to calculate (i) feature correlations, (ii) rela-
tive feature importance, and (iii) partial dependence along 
with associated graphs for each of the eight model features 
across each of ten imputed datasets. The authors recommend 
that interested readers consult the comprehensive online 
guide on iml written by Molnar (2021) for more detailed cov-
erage and examples of implementation. Feature importance 
was averaged across all imputed datasets to arrive at a final 
representative ranking of importance. Partial dependence 

Fig. 1   Overall average com-
pliance versus compliance 
consistency. These graphs 
portray hypothetical trends in 
general compliance over time 
based on parameters of overall 
average compliance and consist-
ency in compliance. A Low 
overall average compliance, low 
consistency of compliance. B 
Low overall average compli-
ance, high consistency. C High 
overall average compliance, 
low consistency. D High overall 
average compliance, high 
consistency
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calculations were combined and smoothed across all ten 
imputed datasets using generative additive models (GAMs).

Results

Compliance as a Predictor of Long‑term Stress 
Reduction

The average model performance across the ten imputed data-
sets for RCI of stress outcome reflects a moderate correlation 
between compliance and post-intervention stress reduction 
(r = 0.349 ± 0.018). The results indicate that compliance 
to an online mindfulness intervention alone accounts for 
approximately 12.2% of the variance related to long-term 
stress reduction outcome.

Relative Feature Importance

Among the eight features used to predict RCI of stress, (i) 
overall average compliance, (ii) slope of overall average 
compliance, and (iii) RMSSD were the top three ranked 
features driving predictions of the machine learning model. 
See Supplementary Table S2 for the complete ranking and 
importance scores. Ranking scores indicate that perturba-
tion of non-temporal, overall average compliance resulted 
in a 4.90 factor change in model prediction error, with the 
temporal features of slope and RMSSD resulting in a 3.99 
and 3.65 factor change, respectively.

Partial Dependence and Feature Interaction

The marginal effects of each of the top three most important 
model features on reliable change prediction suggest that a 
trend toward higher overall average compliance (Fig. 2A) 
and higher consistency in compliance, i.e., lower RMSSD 
(Fig. 2B), as well as greater increases in compliance over 
time (i.e., slope of mean compliance) (Fig. 2C) are individu-
ally/marginally associated with greater reliable change in 
perceived stress across 8–12 weeks. The joint marginal effect 
(interaction) of overall average compliance and RMSSD 
on model prediction illustrates that a trend toward higher 
levels of overall average compliance in conjunction with 
a trend toward lower RMSSD (higher compliance consist-
ency) is predictive of a greater reduction in long-term stress 
(Fig. 2D). The worst outcomes (lowest predicted RCIs) 
are predicted to occur within ranges of lowest consistency 
(highest RMSSD) and lowest overall average compliance. 
By extension, this suggests that being inconsistently, highly 
compliant (Fig. 1C) with mindfulness exercises is associated 
with more favorable outcomes than being inconsistently, 
lowly compliant (Fig. 1A). Furthermore, the contour lines 
of Fig. 2D highlight that the influence of consistency on 

RCI is more incrementally impactful across ranges of lower 
overall average compliance. Taken together, the results indi-
cate that both overall average compliance and consistency 
are associated with reliable change in self-reported stress, 
with consistency having a differential impact on predictive 
dynamics that is modulated by the overall degree of compli-
ance exhibited throughout the course of the therapy.

Discussion

Context and Significance

The study utilized a publicly available dataset with self-
reported participant compliance to an online web-based 
mindfulness intervention to interrogate the impact of mind-
fulness exercise compliance across 4 weeks on self-reported 
stress outcome 1 month out. Capitalizing on the advantages 
of a feature engineering-based machine learning approach, 
novel measures of compliance were constructed from the 
data to predict reliable change in PSS. The selected exam-
ple served as an extension of the research conducted by 
Krusche et al. (2012b), where the focus was on evaluating 
the overall efficacy of a fully web-based mindfulness inter-
vention course. To this end, the primary metrics of analysis 
were changes in mean PSS before and after the course, and 
after 1 month of follow-up. Statistics were descriptive and 
reflected a significance in change from pre- to post-interven-
tion (p < 0.001) with large effect size (d = 1.57) greater than 
reported by most in-person mindfulness intervention courses 
at the time (Krusche et al., 2012b). To assess the impact of 
mindfulness practice on PSS outcome, the cohort was strati-
fied into two and three levels of relative frequency of self-
reported practice. They found no significant difference in 
PSS score between groups with either stratification regime, 
which was described as a ramification of a potentially too 
broad and ill-fitting self-reporting template.

The longitudinal nature of self-reported compliance infor-
mation in the selected dataset was, in fact, a notable strength 
as it permitted the consideration of temporal trends in mind-
fulness practice. Instead of quantifying at-home practice in 
terms of absolute frequency across the intervention period 
akin to how Krusche and colleagues (2012a, b) stratified 
their participants, the data for the example was partitioned 
on a per-week basis to capture more nuanced dynamics of 
course engagement. A hallmark of the machine learning 
paradigm is the process of feature engineering allowed for 
temporal operationalizations of what is normally a static 
treatment of compliance within the mindfulness literature. 
Chief among the derived variables was RMSSD, which 
allowed for a summative metric of change over time to 
address notions of compliance consistency. While Krusche 
et al. (2012a, 2012b) succeeded in testing the feasibility of 
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mindfulness intervention in an online medium with promis-
ing results, they did not fully explore the potential impact 
of self-reported informal practice (compliance) on the 
outcomes they observed. To demonstrate a practical and 
useful application of machine learning to the mindfulness 
body of research, the current study focused on presenting 
how the relationship between participant compliance and 
mindfulness intervention outcome can be explored. With a 

greater proportion of the mindfulness intervention literature 
reflecting on the accuracy and/or reliability of the compli-
ance measures utilized rather than assessing direct asso-
ciations on intervention outcome, this example highlighted 
how, with a proper dataset, predictive modeling can pro-
vide the opportunity to contribute to a relatively small and 
currently inconclusive body of research (Carmody & Baer, 
2008; Crane et al., 2014; Hawley et al., 2014; Parsons et al., 

Fig. 2   Partial dependence plots for the top three important predic-
tors driving model prediction. A Plot of the marginal effect of overall 
average compliance on model prediction of reliable change in stress. 
B Plot of the marginal effect of RMSSD on model prediction of reli-
able change in stress. C Plot of the marginal effect of the slope of 

overall average compliance on model prediction of reliable change in 
stress. D Plot of the joint marginal effect of both overall average com-
pliance and RMSSD on model prediction of reliable change in stress. 
All reliable change indices are based on reliable change in PSS scores 
from pre- to long-term follow-up
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2017). Moreover, where previous literature in this space uni-
formly treats compliance as a summative, static variable, 
the study leveraged the temporal context of a prospective 
cohort dataset to expand the modeling conceptualization 
and consideration of compliance impact on the intervention 
outcomes observed.

The Machine Learning Advantage

A machine learning predictive model has characteristics 
that make it an attractive extension of traditional statistical 
modeling. As distinct from investigations that look at the 
direct associations of compliance on intervention outcome 
using descriptive statistics and/or traditional regression 
techniques and mediation analysis (Bondolfi et al., 2010; 
Carmody & Baer, 2008; Crane et al., 2014; Fuhr et al., 2018; 
Hawley et al., 2014; Luberto et al., 2018; Perich et al., 2013; 
Quach et al., 2017), machine learning methods are capable 
of assessing the more complex non-linear and interactive 
dynamics of several derivative compliance variables simul-
taneously. Additionally, a machine learning model possesses 
some degree of inherent generalizability, even when the 
available data is comparatively small (i.e., N = 100 as in the 
illustrative example). Indeed, the cross-validation paradigm 
of machine learning ensures that all results reflect modeling 
on data that has never been seen while training. Lastly, the 
implementation of a model-agnostic explainer (i.e., LIME 
or SHAP) affords a more specific understanding of the rela-
tive component contributions that drive overall correlative 
associations of variables on an outcome. In this way, the 
behavior of a model (the predictions made) in response to 
variable perturbation can serve as an indicator of absolute 
and relative performance of predictors, as well as a means 
by which to observe the joint effects of variables on the out-
come. For the study, this equated to assessment of feature 
engineered compliance metrics on predicted reliable change 
PSS outcome. Taken together, a machine learning analyti-
cal pipeline of the kind presented in the study results in a 
very different means of quantifying the explanatory power 
of compliance on symptom change in response to interven-
tion, which ultimately translated into a clear quantification 
of compliance impact both holistically (e.g., overall average 
compliance) and in a temporally parsed reductionist frame-
work (e.g., RMSSD, slope of overall average compliance).

Model Performance Results: Interpretation

The primary result of the machine learning model con-
cerns predictive performance and suggests that compliance 
to informal exercises assigned as part of an online mindful-
ness intervention broadly explains 12.2% of the variance in 
reliable change of PSS from before intervention to 1 month 
after completion of the course. This equates to a moderate 

correlation of 0.349 between the independent variables (engi-
neered features) included in the model and reliable change in 
PSS—the model’s dependent variable (outcome to predict). 
Assessment of what is “acceptable” or “functionally useful” 
predictive performance for regression models is usually dic-
tated by the details of the predictive task (e.g., phenomenologi-
cal complexity of the outcome, specific hypotheses/aims of the 
research, theory-guided expectations from predictive features), 
as well as the general expectations and benchmarks within the 
pertinent field/subfield. It may be that a model that is capable 
of explaining 5% of the variance (r = 0.224) is useful in one 
setting, while a model that is capable of explaining 20% of the 
variance (r = 0.447) is of no merit in another. Please see Sup-
plementary Discussion 1 for interpretation and commentary 
of an alternate outcome.

Model Introspection‑Feature Importance: 
Interpretation

Although the model result quantifies the predicted impact of 
compliance on reliable stress change holistically (r = 0.349), it 
cannot reflect the relative effects of each compliance predictor 
on outcome. By using LIME, however, the illustrative study 
explored how the model “learned” the data through predic-
tor perturbation. The marginal effects of each predictor on 
model prediction that result from this methodology provided 
a structured way of comparing compliance metrics, thereby 
determining relative contributions of compliance predictors 
on self-reported mindfulness intervention stress reduction. 
Each predictor was designed to capture a different aspect 
of compliance (see the “Feature Engineering” subsection in 
“Data Analyses”); thus, predictors with significantly higher 
importance relative to others may speak to dominant roles in 
certain phenomenological nuances of compliance behavior. 
The illustrative example results indicated that overall aver-
age compliance is most impactful for the model’s predictions, 
substantiating the utility of temporally insensitive measures 
in the literature; however, measures of compliance trajectory 
and pattern (i.e., RMSSD and slope) were also found to have 
an appreciable impact (3.65 to 3.99 factor increase in model 
error when perturbed; see Supplementary Table S2). This 
hints that such temporal considerations of compliance (e.g., 
consistency) may offer additional insight beyond what is pos-
sible from more simple summative metrics, and advocates for 
a complementary application of both time-sensitive and time-
insensitive measurements of compliance. Please see Supple-
mentary Discussion 2 for interpretation and commentary of 
an alternate outcome.
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Model Introspection‑Feature Interaction: 
Interpretation

Where feature importance metrics can introspect the rela-
tive impact of a feature on the model, they cannot reflect 
directionality or trends in association between feature and 
outcome. Therefore, upon finding that features have a sub-
stantial and significant relative impact on the prediction 
decisions of the machine learning model, their single and 
joint effects on the outcome across a range of values can be 
probed further in LIME with additional visualization tech-
niques. The partial dependence results graphed in Fig. 2A–C 
illustrate general trends that are expected: (i) individuals 
with low average compliance across weeks are predicted 
to have a lower change in stress reduction compared with 
individuals with high average compliance across weeks 
(Fig. 2A), (ii) individuals who are less consistent in their 
compliance (regardless of whether it is high or low) likewise 
tend toward lower change in stress reduction compared with 
those who are more consistent (Fig. 2B), and (iii) individuals 
who showed a negative trajectory (slope) in average compli-
ance through the study reflected worse outcomes (Fig. 2C). 
The trend is most apparent and consistent in Fig. 2B with a 
continuous and gradual decrease in predicted reliable change 
in stress with increasing RMSSD (decreased consistency).

Further investigation of the joint effect of overall aver-
age compliance and compliance consistency (i.e., RMSSD) 
on outcome suggests that higher consistency, coupled with 
higher overall average compliance, is predicted to result 
in more favorable reliable change (Fig. 2D). Leverage of 
this visualization highlights the utility of investigating the 
interactive effects of features. For the current empirical 
example, this translates to an ability to illustrate the syner-
gistic importance of both traditional mindfulness measures 
of compliance (i.e., overall average compliance) and novel, 
derived, temporal operationalizations (i.e., RMSSD). See 
Supplementary Discussion 3 and Supplementary Fig. S2 
for interpretation and commentary of an alternate outcome.

Limitations and Future Research

The presented study was a practical example of applying 
a machine learning methodology to mindfulness research 
for the extraction of novel insight. To this end, the results 
evidence potential benefit to extending the manner by 
which compliance is conceptualized and operationalized. 
The selected dataset fit well within the broader context 
of a primer and general introduction to machine learn-
ing. As any real-world dataset has its idiosyncrasies which 
naturally are consequential to the relative pertinence of 
modeling options and choices, this work was limited in 
its ability to cover optional methods of, and components 
to, the machine learning modeling process such as feature 

autoencoding, manual hyperparameter tuning, pre-process-
ing of text-based data, and oversampling/undersampling 
techniques. While the goals of this work did not align with 
exhaustive treatment of the machine learning field, it is 
nonetheless important for readers to be aware that mod-
eling versatility, extensibility, and customizability extend 
far beyond what has been presented.

Concerning the present study specifically, the results 
suggest that future exploration into the impact of compli-
ance on mindfulness intervention outcome is warranted. 
By extension, consideration of compliance consistency and 
other metrics that look at the temporal dynamics of com-
pliance throughout the duration of the intervention may be 
fruitful toward more complete assessments of intervention 
efficacy. With the ubiquity and continued growth of digi-
tal health initiatives and online mental health treatment 
resources, it is unsurprising that the preferred format to 
receive mindfulness meditation interventions is online 
(Wahbeh et  al., 2014). Compliance, especially in this 
individualized and private format, is more complicated to 
measure. As researchers continue to develop and test new 
interventions for this digitized translation, analyzing the 
impact of compliance may require the leverage of more 
intricate models to offset limitations in its quantification. 
Machine learning is one avenue with which to mitigate 
deficiencies inherent to the “unreliable estimates of par-
ticipants’ true informal engagement” that exist across stud-
ies (Carmody & Baer, 2008; Crane et al., 2014; Hawley 
et al., 2014). With no standardized unit of measurement 
that captures the amount of time, frequency, or degree 
of “quality” of exercise practice (Segal et al., 2019), the 
development of many derivative compliance-based pre-
dictors within a machine learning framework can more 
completely capture and analyze compliance effects and can 
therefore transcend the operationalization of compliance 
as a single metric. The authors encourage mindfulness 
researchers to broadly leverage machine learning predic-
tive modeling as a complementary analytical technique in 
future tests of hypotheses, evaluations of therapies, and 
explorations of their data.
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