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Abstract

Researchers have increasingly begun to use consumer wearables or wrist-worn smartwatches and

fitness monitors for measurement of cardiovascular psychophysiological processes related to 

mental and physical health outcomes. These devices have strong appeal because they allow for 

continuous, scalable, unobtrusive, and ecologically valid data collection of cardiac activity in 

“big data” studies. However, replicability and reproducibility may be hampered moving forward 

due to the lack of standardization of data collection and processing procedures and inconsistent 

reporting of  technological factors (e.g., device type, firmware versions, sampling rate),  

biobehavioral variables (e.g., body mass index, wrist dominance and circumference), and 

participant demographic characteristics, such as skin tone, that may influence heart rate 

measurement. These limitations introduce unnecessary noise into measurement, which can cloud 

interpretation and generalizability of findings. This paper provides a brief overview of research 

using commercial wearable devices to measure heart rate, reviews literature on device accuracy, 

and outlines the challenges that non-standardized reporting pose for the field. We also discuss 

study design, technological, biobehavioral, and demographic factors that can impact the accuracy

of the passive sensing of heart rate measurements, and provide guidelines and corresponding 

handouts for future study data collection and design, data cleaning and processing, analysis, and 

reporting that may help ameliorate some of these barriers and inconsistencies in the literature.



Heart Rate Research in Psychology and Medicine

Heart rate (HR) has long been used as a clinical indicator of overall cardiac health. HR is 

predominantly influenced by the coordination of the sympathetic and parasympathetic branches 

of the autonomic nervous system, which can be modified by biopsychosocial factors including 

physical and relational stress, diet, physical fitness, medication use, and substance use 1 thus 

offering a direct and quantifiable connection to the stress diathesis model of health. In this 

model, cardiovascular dysfunction has been proposed to be a putative mechanism associated not 

only with morbidity and mortality, but also with a range of psychiatric disorders.

In terms of physical health, meta-analyses have shown that resting HR above 80 beats per

minute (bpm) is associated with a 33% increased risk for cardiovascular mortality and a 45% 

higher risk for all-cause mortality 2,3. In terms of HR dynamics, delayed HR recovery after a 

stressor (i.e., the return to resting or baseline HR) has also been shown to be associated with 

mortality 4, while the literature is more mixed on the association between HR reactivity  (i.e., the 

increase in HR from resting or baseline due to psychobiological stressors) and health outcomes 5.

Furthermore, dysfunction of the autonomic nervous system is also associated with a range of 

psychiatric disorders 6,7 including anxiety disorders 8, depressive disorders 9, posttraumatic stress 

disorder 10, and schizophrenia 11. In a large prospective Swedish study of over 1 million male 

participants, elevated resting HR during late adolescence was found to be associated with an 

increased risk of obsessive-compulsive disorder, anxiety diagnosis, and schizophrenia, while 

lower resting HR was associated with substance use disorders and violent criminality 12.

In addition to these studies, there is strong evidence that psychiatric diagnoses are 

associated with increased risk for physical morbidity and mortality. For example, those with 

psychopathology lose a median of 10 years of life 13, with the most common cause of death due 



to cardiovascular diseases 6. Cardiac activity therefore may be a biological factor that serves as a 

mechanism linking mood and anxiety disorders with cardiovascular and metabolic risk and 

mortality 14,15. In other words, HR may be a transdiagnostic biomarker with clinical utility for 

psychology, psychiatry, and medicine to improve nosology and increase identification of those at

risk for the onset of psychiatric and physical health disorders. Until recently, the quantification 

and measurement of HR has been relegated to medical and research settings, which has largely 

precluded the observation of HR during patient and participant daily life, thereby limiting the 

generalizability of findings to real-world living conditions.

Current Limitations in Cardiovascular Research

The foundation of HR research has, until recently, been largely constrained due to 1) lack

of ecological validity (i.e., the degree to which a laboratory or medical environment represents 

actual real-world conditions), 2) inability to collect temporally detailed and longitudinal HR 

measurements both within and across time (e.g., hours, days, weeks, months), and 3) prohibitive 

financial cost of devices for everyday use. 

In terms of ecological validity, HR recordings have historically been collected in discrete 

laboratory or medical environments that do not represent daily life and as such, can be anxiety-

inducing as medical phobia is common and novel environments may increase HR, which 

consequently could lead to overestimation of resting HR 16, which has been found in greater 

adrenergic activity in clinical settings, which is a known phenomenon called “white-coat 

hypertension or syndrome” 17,18. In other words, research has been historically limited to 

collecting data from medical patients and research participants in novel settings that might not 

generalize to their everyday lives, which creates the potential for inaccurate baselines and 

therefore inaccurate measurement of HR dynamics (i.e., reactivity/recovery). The Law of Initial 



Values gives further insight into this issue by highlighting that an initial value has a large impact 

on the strength and direction of a response, such that a higher pre-stimulus level will lead to a 

smaller post-stimulus response or, in other words, a smaller response when there is a greater 

initial value 19–21. This is similar to a ceiling effect limiting the magnitude of a reactivity response

and this can artificially constrain the range of measurements (e.g., reactivity) within a specific 

construct, such as HR. 

Second, collection of HR data in these environments lacks temporal resolution within and

across days as HR is usually collected during a short recording within a single day, which has 

precluded research from comprehensively investigating the transition from acute to chronic 

stress 22. Greater temporally detailed longitudinal HR data collection may reveal important within

day, daily, weekly, monthly, seasonal, and yearly fluctuations in HR that are currently not 

captured and may contain important diagnostic and predictive information. Lastly, the accurate 

collection of HR has historically been financially restrictive relegating these measurements to 

medical and scientific contexts, and precluding the large-scale adoption and democratization of 

these technologies by the general public.

Wearable Technological Advancements and The Scalability of Cardiovascular Research

Currently, wrist-worn wearables provide an opportunity to examine HR in real-world 

environments, across longer periods of time, and with high resolution at a low cost, by using an 

optical sensor (photoplethysmography; PPG), that allows these devices to collect volumetric 

changes in blood profusion (i.e., pulse rate) that can serve as a surrogate for HR. Wearable PPG 

sensors can use different colors of light, such as green or red, to index these changes in blood 

profusion with each having different costs and benefits. For example, green LED light is a 

shorter wave-length and has been shown to be convenient, because it has good signal-to-noise 



ratio and is resistant to motion artifacts, but is limited by the amount of light that can pass 

through tissue, especially darker skin tones. In contrast, red/infrared LED, which are more 

commonly used in medical settings, is not absorbed as well by the skin allowing the light to 

transmit deeper and allowing for detection of multiple biological measures, but it has a lower 

signal-to-noise ratio and is more susceptible to motion artifacts 23. Overall, PPG devices allow 

for in vivo examinations of the roles that resting HR and HR dynamics (e.g., reactivity and 

recovery) play in medical and psychiatric disorders in real-world settings. It is important to note 

that while HR and pulse rate are often used interchangeably, they are two distinct physiological 

signals with HR representing the heart contraction via electrical impulses, while pulse rate 

represents the rate of change in blood pressure due to the ventricular ejection of blood. The later 

of these two is the predominant method for data collected with wrist-worn wearable devices, 

although some more recent wrist-worn wearable devices, such as the Apple Watch Series 4 and 

5, have allowed for the discrete, rather than continuous, collection of HR via electrical impulses 

on par with a single-lead electrode. Currently, this technology is limited, as users have to sit still 

with their arm resting on their lap or table and put a finger from the hand opposite to the watch to

close the circuit for 30 seconds, therefore precluding the ability for temporally detailed 

longitudinal ECG collection at this time. For this reason, addressing accuracy of wearable ECG 

sensors is outside the scope of the current review and will not be discussed further. Furthermore, 

PPG can be used to index heart rate variability (HRV), blood pressure, oxygen saturation, and 

cardiac output 24, but as of yet have not be widely rolled out in consumer-use devices and 

therefore data collection other than HR will not be discussed further.



Increased Popularity of Wrist-Worn Wearable Devices

Researchers are increasingly using consumer wearables or wrist-worn smartwatches and 

fitness monitors for the digital measurement of cardiovascular health and psychophysiological 

stress as these devices allow for continuous, scalable, and unobtrusive, “big data” collection of 

overall cardiac activity in real-world conditions with large samples 25–30. Between 2008 and 2018 

there was a 580% increase in total articles published that contained “wearable” and “heart rate”, 

indicating that this is a burgeoning area of research that may benefit from standardization of 

procedures to increase generalizability and clinical utility of research findings.

Recent information on the reproducibility and replicability crisis has swept the sciences 

and as such these issues are very important for digital health and mHealth research, which 

includes wrist-worn HR accuracy and any studies that utilize wearable HR data, as this new field

will allow for large data samples 31 with various sensors that will increase the ease for p-hacking.

Recent research has proposed using wearables in psychological research 32, treatment settings 33, 

while other research has already begun to use mHealth data to show important global real-world 

HR norms 16 and global differences in HRV by age, gender, and time of day 26, and allowing for 

surveillance of influenza symptoms 34, yet questions remain as to the accuracy and validity of 

data collected from wearables 35,36.

How Accurate is HR Detection with Wrist-Worn Wearable Devices?

Current research into the HR accuracy of wrist-worn wearable devices attempt to 

compare the measurement between wearable PPG and a reference method, such as an 

electrocardiogram (ECG), in order to determine whether or not measurements between the 

devices are outside of clinically important limits of agreement, so that devices can supplement, 

eventually replace, or be used interchangeably37,38. While some studies have attempted to address



wearable HR accuracy using the gold-standard reference method of ECG, which directly 

measures HR via electrical impulses from the heart and is used for clinical accuracy, 38–44 other 

studies have used suboptimal reference methods, such as the chest straps 45–47 or pulse oximeters

48, which themselves have a degree of error (varying between 0 – 40 bpm when compared to 

ECGs 44). This has the potential to introduce a degree of additional error into wrist-worn 

wearable HR accuracy research as suboptimal referencing methods can introduce unnecessary 

measurement error and potentially undermine findings. Despite this caveat, current research into 

wearable HR accuracy is promising as is discussed below. Furthermore, some wearable devices, 

such as the Apple Watch 4 and 5, have gained FDA 510(k) class II clearance for the ECG feature

and ability to detect arrhythmias49, indicating that FDA clearance and conformance with IEC-

60601(-2-47) guidelines may provide a path towards standardization of feature sets and firmware

for consumer wearables in the future, which raises the important question of the interface 

between consumer wearables and medical devices. Currently, in most instances, consumer 

wearables are not medical devices, but this is an issue that is evolving and in the future may 

influence legislation and standardization. Below we mainly focus on HR accuracy of Apple 

Watch and Fitbit as these are two of the most popular wearable companies in the United States 

and have been more commonly examined in empirical research to date, but it should be noted 

that other consumer wearable brands, such as Garmin45,46,50, Samsung42,43,48,51, and Microsoft42,47 

have also had studies examining their HR accuracy.

Current research verifying wearables to the gold-standard ECG, which uses electrodes to 

directly measure cardiac muscular contractions from electrical activity of the heart, have shown 

that on average wearables slightly and negligibly underestimate (-0.9 to -7.2 bpm) absolute HR

40,41,44,52 with the Apple Watch having slightly greater accuracy than Fitbit devices (Apple Watch: 



-1.3 bpm, Fitbit: -9.3 bpm 42–44, as well as lower overall error with the Apple Watch models 

ranging from 1.20 - 6.70% error and Fitbit models ranging from 2.38 - 21.36% error 39,42,45, lower

mean difference standard deviation 43, and higher agreement with ECG than Fitbit devices 39,44. 

Furthermore, recent research has indicated that consumer wearables, such as the Apple Watch 

and Fitbit are more accurate than research-grade wearables, which are much more expensive yet 

provide the benefit of raw data50. These findings have led some researchers to conclude that 

wearables detect HR with acceptable accuracy in both laboratory and real-world settings for 

research, but importantly not medical settings 38,42 as more research needs to be done. For 

example, researchers compared the accuracy of ambulatory ECG, Apple Watch 3, and Fitbit 

Charge 2 data within an individual across 24 hours and found that while devices slightly 

underestimated HR when values were aggregated within and across different daily activities, 

which indicated high HR accuracy, any individual HR observation could deviate from ECG by 

significantly large margins that would be likely be problematic in medical settings 38. This 

finding indicated that while overall, summary statistics after outlier detection and data cleaning 

may be very accurate for research purposes, any single observation in real-time may have a large

degree of error, which could be significant for moment-to-moment observations in medical 

settings. These preliminary findings suggest that researchers can utilize wearable HR to 

accurately assess HR, especially resting HR, when using aggregated data across activities and 

removing outliers. The next steps for consumer wearable HR device accuracy research will 

require meta-analyses in order to summarize the current state of consumer wearable HR 

accuracy. Despite the promise of wearable HR accuracy, replicability and reproducibility in the 

future utilizing wearable HR as a transdiagnostic marker of psychiatric and physical health will 

likely be limited due to lack of standardization of data collection, study design, and data 



processing as well as inconsistencies in the reporting of technological, biobehavioral, and 

demographic characteristics that introduce unnecessary noise into the literature and cloud 

interpretation and generalizability of findings. 

Disadvantages to Non-Standard Reporting

The lack of “metadata standards” or guidelines and standards for describing, reporting, 

and creating meaning from collected data in order to increase transparency, accountability, and 

interpretability of data in mHealth is likely to create a number of issues related to noise/signal 

ratio, contradictory results, lack of generalizability, and false positive and negative findings, 

which have historically undermined replicability (i.e., the ability to replicate a study with a new 

dataset) and reproducibility (i.e., the ability to replicate findings from the same dataset). 

Therefore, many researchers have begun to push for increased focus on reproducible and open 

practices in science 31,53–55. Below we outline the data collection, cleaning, and protocol design 

issues as well as technological, biobehavioral, and demographic factors that may influence 

reproducibility and replicability before turning to guidelines that the field can use in order to 

increase scientific rigor and generalizability of findings.

Study Protocol Design and Data Collection: Addressing Design, Biobehavioral, and 

Demographic Issues That Can Influence Reproducibility and Replicability

There are many researcher degrees of freedom when it comes to decisions related to 

study protocol design and data collection, cleaning, and processing that are important to note as 

standardizing this process may help ameliorate some barriers and inconsistencies in the 

literature.

Protocol Design.



Summary Metric Calculation. Hardware differences between devices determines HR 

measurement second to second, which has large implications on overall interpretability of the 

data, such that sampling rate can introduces researcher degrees of freedom for calculating beats 

per minute (bpm). Unfortunately, there is currently a lack of transparency from manufacturers on

underlying algorithms and raw data outputs are often times not provided, which prevents 

researchers from dealing with this issue and creating a standardized protocol for transforming 

raw data to HR. For example, Fitbit logs HR data at 1 second intervals during exercise tracking 

and 5 second intervals at other times, while the Apple Watch samples HR data every 10 minutes,

except during workouts, which are continuous. Relatedly, some devices, such as the Apple 

Watch can take multiple HR measurements within a minute allowing researchers to use various 

calculations, such as the mean or median within this minute to calculate bpm, which may alter 

wearable data values. Researchers should report how bpm or other summary metrics are 

calculated (e.g., mean or median). Therefore, summary metric calculation should also be clearly 

reported in publications.

Data Cleaning: Outlier Detection and Dealing With Missing Data. In addition, the 

methods researchers select to clean and process raw data prior to analyses can also affect results 

and conclusions and should be reported in detail. These choices include how missing data values 

are handled (listwise deletion, pairwise deletion, multiple imputation) and how outliers or 

biologically implausible values are handled (e.g., some devices record HR values of zero when 

devices are not worn). 

Data cleaning can be an important step in data pre-processing in processing ambulatory 

HR assessments. There is a strong need to customize the methods of data cleaning to the device 

being used and the models being adopted, rather than adopting a universal pre-processing 



pipeline due to device-specific differences and based on the study research questions. For 

example, outliers in linear models may be strongly impact linear estimators, and some studies 

may therefore adopt a modeling strategy wherein values are winsorized (e.g., extreme values can

be truncated at the 2.5th and 97.5th quantiles 56). However, if a study were interested in HR 

arrythmias using wearable assessments (such as atrial fibrillation), then these extreme values 

may be of vital interest and should not be removed or altered 27. Moreover, for some, but not all 

devices will report missing HR data with zero values and these values should be removed and 

filled in with missing data rather than winsorized (which would otherwise substantially bias 

parameter estimates unless the degree of missing HR points was trivial). Other strategies (e.g. 

spectral frequency filters), will depend upon the type of the sensor being utilized in the wearable 

sensor 57. Rather than proposing universal standards, we rather recommend that researchers 

thoughtfully approach data cleaning, altering their decisions to both their own research questions 

and to the devices being used, and reporting their utilized methodology. 

The practice of completely removing persons from studies due to proportions of missing 

data (i.e. listwise deletion) is known to bias estimation and adversely impact the standard error of

point estimates across modeling strategies 58. More specifically, simulation studies with intensive

longitudinal data suggest that multiple imputation and full-information maximum likelihood 

reliably produce better parameter estimates than listwise deletion 59. Moreover, dynamic models 

of  HR captured in daily life can be effectively estimated even with very large proportions of 

missing data (e.g. greater than 70% missingness for each subject) using full-information 

maximum likelihood estimation 60. Based on this, we recommend that authors aim to be as 

inclusive as possible, using appropriate model-based strategies for dealing with missing data.



Defining Non-Wear Time: Device Charging and Non-Adherence. For long-term field 

studies, information about participant adherence and wear-time should be considered and 

reported since these issues can affect data quality. The definition of wear time and any minimum 

wear-time thresholds for data inclusion (e.g., days with wear time less than 1000 minutes 

excluded; Radin et al., 2020; valid day of wear time defined as at least 600 1-minute epochs of 

nonzero HR values within a calendar day) 61. One issue reported by multiple users on the online 

Fitbit Community Forum is occasional logging of HR values (often higher and more variable 

than typical, e.g., 100-150 bpm) when the devices are not being worn, suggesting that 

supplemental non-wear time diaries may be required for some devices or protocols.

Standardizing Wrist Data Feature Collection. There are a number of study design 

features related to the wrist that have been shown to have effects on HR accuracy. Larger wrist 

circumference has been shown to be associated with reduced HR accuracy42, although these 

outcomes have not been found in all studies 44,46. In addition to wrist circumference, there are a 

number of other factors including wrist placement, tightness of device, dominant vs non-

dominant hand use, and degree of wrist movement that have consistently been shown to 

influence the accuracy of HR measurement 39, which may be due to the fact that greater wearable

movement is associated with decreased PPG accuracy as discussed below 62. These are likely 

some of the most important factors influencing HR accuracy. As such, wrist placement, tightness

of device, dominant vs non-dominant hand use, and whether wearable devices are naturalistically

placed by participants as opposed to explicit instructions by experimenters should be reported.

Open Science and Data Transparency. Lastly, from a study design perspective, mHealth 

research will be particularly susceptible to a number of research practices, which have been 

shown to degrade the quality, consistency, generalizability, and therefore replicability and 



reproducibility of findings 31 as data sensors in this research field allow for the vast collection of 

big data samples, which will be vulnerable to some of the “four horsemen of the 

reproducibility/replicability apocalypse,” including 1) publication bias 63, 2) P-hacking, 3) 

hypothesizing after the results are known or HARKing 54, and 4) low power 64, the last of which 

likely will not be an issue for mHealth research as large samples sizes will be relatively easy to 

collect even in samples with low base rates in the population. Therefore, we urge future wearable

HR studies and digital passive sensing mHealth studies in general to take up free open science 

practices (http://osf.io/), such as study preregistration, open code, and open data and where open 

data cannot be released due to clinical population or privacy issues, releasing simulated datasets 

that preserve dataset characteristics where applicable 65. On the editorial and reviewer side, we 

join other researchers in urging for editors and reviewers to allow for null, inconclusive, and 

contradictory data results without putting undue pressure on researchers to come up with 

coherent narratives that might not fit the data 66.

Biobehavioral and Demographic Data

Individual differences and variability in both biobehavioral and demographic factors have

the potential to influence the collection of HR during research studies and should therefore be 

strongly considered in descriptive reporting as well as statistical modeling in studies using HR 

measurement collected from wearable devices.

BMI and Biological Sex. Higher body mass index, which likely covaries with larger wrist 

circumference as described above, has been shown to be associated with reduced HR accuracy

42,62, although again these outcomes have not been found in all studies 44,46. Nevertheless this 

variable should be collected, reported, and potentially controlled for in research. In addition, 

research has not always reported participant biological sex, but research has found higher device 

http://osf.io/


error in males compared to females 42, indicating that participant biological sex should be 

collected and possibly controlled.

Skin Tone and Hair Follicle Density. Evidence is starting to accumulate on the 

importance of skin tone when it comes to accuracy and generalizability of wrist-worn wearable 

studies with darker skin tone (and tattoos) being found to be associated with reduced wrist-worn 

HR accuracy as they absorb more green light 67, yet this is not found in all studies43,50. The 

importance of this point cannot be overstated as historically, science and medicine have paid less

attention to recruiting minority groups 68, which has resulted in blunted health gains in these 

populations making it of utmost importance to identify how HR accuracy varies by race and 

ethnicity factors in order to ensure that findings generalize to these populations as future research

might have direct implication for patient healthcare. Currently, the vast majority of wrist-worn 

wearable studies incorporating HR measurements do not report or control for participant race 

and ethnicity, which undermines the ability to look at potentially important group differences in 

health outcomes and therefore decreases the ability of results to generalize to large segments of 

the population. These demographic characteristics should be collected, reported, and controlled 

for in all wearable HR studies moving forward and researchers should collect data related to 

participant skin tone (e.g., Fitzpatrick Skin Type). Furthermore, wearables that use red light will 

likely be more effective on darker skin tones as it is not absorbed by melanin, which may allow 

for more accurate heart rate measurements 23. In addition to skin tone, some research indicates 

that hair follicle density and sweat can influence device measurement69.

Motion Artifacts due to Physical Activity. Importantly, two related factors identified as 

influencing wearable HR accuracy are motion artifacts23 and level of physical activity 46. 

Specifically, research has shown that at rest, wearables can perform similarly to an ECG, with 



some research showing that absolute error during activity is 30% higher than rest50 and a 

substantial amount of research showing that wearable devices are more accurate during rest and 

low intensity exercise when compared to higher intensity exercise, when wearable devices can 

begin to deviate more from ECG recordings 38,39,44,46,70–73, although this has not been found in all 

studies 42,45,47,51, with some studies finding that accuracy of HR measurement was comparable 

across resting baseline or vigorous activity 45, while a second study found that the accuracy of 

HR measurement was highest during running 51, and a third found that measurement during 

walking, running, and cycling was more accurate for some devices than during sitting 42. Other 

research found that across 4 consumer wearables and 2 research grade devices are all were 

“reasonably accurate” during rest or during prolonged heart rate that was elevated and that 

differences in accuracy tended to arise during changes in activity50. Therefore, it is possible that 

activity intensity may be less important to device accuracy than the degree of erratic wrist 

movements and corresponding position of the wearable device during an activity 74, which cause 

motion artifacts and may or may not co-occur with more vigorous physical activity. Furthermore,

research has described the “cross-over effect” when repetitive motion and activity causes 

underlying algorithms to mistake the movement cadence for cardiac activity50,75. As mentioned 

previously one strength of PPG green light is that it is less susceptible to motion artifacts, while 

PPG red light is more susceptible to motion artifacts indicating that wearables that use green 

PPG or a combination of green and red PPG are likely to perform better during movement and 

physical activity 23. Future studies may want to control for wearable actigraphy data in order to 

remove HR accuracy variance that is influenced by wrist movement.



Technological Factors That Can Influence Reproducibility and Replicability

In addition to the high heterogeneity in study protocol design as described above, various 

technological factors have the potential to influence the collection of HR during research studies 

and should therefore be strongly considered in descriptive as well as statistical modeling when 

using wearable devices. Specifically, due to the variety of wearable devices within and across 

technology companies, versions of devices, and the fast pace of technological advancement 

(especially in consumer products) there are a number of technological factors that should be 

reported and potentially controlled for in mHealth studies. First, as described above, there are 

currently various wearable devices and versions on the market that have the potential to use 

different hardware, which may introduce differences in HR recordings. One such hardware 

difference between devices are sensor type. For example, the Apple Watch uses both PPG green 

light-emitting diode (LED) lights and infrared LED light, while the Fitbit uses only PPG green 

LED.

In addition to hardware differences, researchers should also consider software differences

between devices. Wearable manufacturers use proprietary algorithms to translate PPG signals to 

HR measurements, which may influence accuracy 23. These algorithms, while often simplistic, 

may be altered with firmware updates, yet most studies fail to report firmware information. Not 

controlling for firmware version may lead to poorer reproducibility and replicability as two 

studies investigating the same device with two or more different firmware versions might 

actually come to different conclusions even if all other variables are held constant.

Due to the high heterogeneity in device type, version, hardware, software, and sampling 

rate, these should be consistently collected and reported in descriptive tables for both cross-

sectional and longitudinal studies. In addition, if a study uses multiple types of devices or a 



single device in a longitudinal study that covers a period of time when there are firmware 

updates, then statistical models should control for device type and firmware version.

Guidelines

Here we join other researchers in the call for the establishment of “metadata standards” or

guidelines for collecting, processing, describing, reporting, and creating meaning of collected 

HR and other biological data in order to increase transparency, accountability, and 

interpretability of data 28,76,77. With this in mind we have created two checklists. The first 

checklist addresses standards for reporting study characteristics, including how the study was 

designed, technological hardware and software used; participant characteristics; and data 

cleaning, analysis, reporting, and transparency1. The second checklist provides potential 

covariates in regards to technological factors and both biobehavioral and demographic factors 

that have also been shown to influence accuracy of HR measurements and dynamics. We 

propose that future research utilizing wearable HR should report in methods sections that study 

design protocol, biobehavioral, participant demographic, and technological variables have been 

reported in accordance with these standardized guidelines and include these checklists in 

supplemental materials. Utilizing these guidelines and referencing them in methods sections has 

the potential to decrease non-standard reporting, increase reproducibility and replicability, while 

also leading to greater generalizability of results, which may increase the clinical utility of 

findings in this field.

1 Note that we suggest that researchers report the reliability of their metric and justify why this reliability threshold 
is sufficient for the given study. Note that we make this recommendation purposefully and do not adopt a single 
global threshold for all of research. We do this because research is heavily context dependent. For example, a very 
high standard might be needed when heart rate is used to classify heart disease. However, in contrast to this 
situation, when heart rate is only one of many potential avenues of information it might be sufficient that heart rate 
signal is reliably better than complete noise. For instance, adopting a merely better-than-noise standard in a multi-
component machine learning model this could still improve performance and may be preferable when researchers 
are focused on scalable low-cost devices. In the second scenario, imposing an arbitrary standard might make a 
model less accurate because it might otherwise require the researchers to drop heart rate signal entirely.



Conclusion

HR has long been used as a clinical indicator of overall cardiac health that has been 

conceptualized as a transdiagnostic biomarker with clinical utility in psychology, psychiatry, and

medicine to improve nosology and increase identification of those at risk for the onset and 

relapse of psychiatric and physical health conditions. Cardiovascular dysfunction has been 

proposed to be a putative mechanism associated not only with morbidity and mortality, but also 

with a range of psychiatric disorders. Until recently, real-world continuous collection of HR in 

medical patient and research participant lives has been limited by technological and financial 

factors. The recent introduction of consumer wearables or wrist-worn smartwatches and fitness 

monitors for the digital measurement of cardiovascular health and psychophysiological stress has

allowed for the continuous, scalable, and unobtrusive, “big data” collection of overall cardiac 

activity in real-world conditions with large samples that allow for the collection of passive and 

large scale collection of ecologically valid data. This has the potential to improve the study of 

cardiovascular health in medicine and psychophysiological stress in psychiatry and psychology. 

The current literature indicates that these devices can provide acceptable accuracy for the 

measurement of HR for research settings, especially when scalability and ecological validity of 

measurement settings are critical considerations that may outweigh the need to offer gold 

standard assessment. It is important to note that PPG technology can be used to index blood 

pressure, oxygen saturation, and cardiac output, which will likely be slowly rolled out into 

wearable technology moving forward. In addition PPG can index HRV, which is derived from 

beat to beat intervals calculations in the time-domain, such as root mean squared of successive 

differences or the standard deviation of NN intervals, the latter of which is used in the Apple 

Watch, but only with sporadic recordings throughout the day. Currently, many commercial 



wearables don’t provide beat to beat interval data to users, although some researchers have 

worked with industry partners to derive measurements of HRV 26. The guidelines provided above

will be necessary to apply to research when studying PPG data at more fine grained detail than 

HR.

Given the variations in both hardware and software in these devices, variation in study 

design protocol, as well the way in which individual differences across both biobehavioral and 

demographic characteristics may affect the accuracy of measurement, the field requires standards

of reporting that will at the very least allow for the characterization of these factors when 

comparing studies. In this paper we have proposed a pair of reporting checklists that indicate the 

details that should be included in any paper using this form of HR measurement. 

Overall, while consumer wearable devices that collect HR likely are not yet advanced 

enough to be replacing medical grade ECG anytime soon, these devices can be used to 

supplement medical grade devices with medical patients and continuously collect HR data on 

research subjects when risk for acute cardiac events is not of immediate concern. This has the 

potential to advance research into cardiovascular health and psychophysiological stress in order 

to better understand how HR influences overall physical and psychological health.



Table 1. Summary of Most Popular Consumer Wearable Devices

Device* Sensor Type FDA 
Status

Sampling Rate (i.e., how 
often it samples)

Sampling 
Frequency

Cost Market 
Size/Share 
2019 Q478

Green
LED

Red/IF 
LED

ECG

Apple79 X X X 510(k) 
class II 
clearancea

Variable 
 Rest- every 10 minutes
 Exercise- continuous

100s x per second $199 (v3) to 
$399 (v5)

36.5%

Fitbit80 None Variable
 Rest- 5 second intervals 
 Exercise- 1 second 

intervals

Unknown $149 
(Charge 4) to
$199 (Versa 
2)

5.0%

Garmin81 X None Variable Variable
 High 

Frequency
 Low 

Frequency

$129 
(vivosmart 
4)

*

Samsung X None Manual Unknown Galaxy Fit 
($99)

8.8%

Xiaomi X None Continuous Unknown Mi Band 4 
($39.99)

10.8%

Huawei82 X None Default is set to manual. 
Can turn on continuous, 
which measures every 10 
minutes or every 6-10 
seconds during high-
intensity workouts

Unknown Huawei 
Band 4 
($42.31)

7.8%

*Note: Data is presented on most recent wearable devices for each manufacturer. Garmin was not included in the top 5, so was 
listed under Other
aNote: This only applies to the ECG sensor and high heart rate notifications.



mHealth Wearable Heart Rate Metadata Checklist 1:
Descriptive Reporting of Sample

Describe
Study Design 
Protocol

 Naturalistic or Laboratory
 Group 

(Psychiatric group diagnostic or symptom selection criteria)
 Recruitment Source
 Inclusion/Exclusion Criteria 

(Presence or absence of conditions, age range)

Technological 
Factors

 Device Manufacturer
 Device Type
 Device Version
 Firmware Version 
 Hardware (sensor type)
 Sampling Rate
 Device reliability and justification for why this level of reliability is 
adequate for the study design

Participant 
Characteristics

 Age
 Race
 Ethnicity
 Biological Sex
 Gender
 Skin tone (e.g., Fitzpatrick Skin Type)
 Body Mass Index
 Wrist Circumference
 Wrist Placement (e.g.,  dominant or non-dominant)
 Medical Condition
 Cardioactive Medication Use

Data Cleaning, 
Handling, and 
Analysis

 Summary bpm Metric Calculation (e.g., mean, median) 
For multiple samples per minute, how was final bpm calculated

 Definition of Non-Wear Time and Reason for data loss (battery life, 
device failure, participant attrition)
 Dealing with missing data

 Listwise Deletion (not recommended)



 Pairwise Deletion (not recommended)
 Model-Based (e.g. full-information maximum likelihood, 
multiple imputation)

 Outlier identification and correction
 Wrist Circumference
 Wrist Placement

 Dominant or non-dominant
 Tight vs loose
 Naturalistic use by participants vs explicit instructions by 
experimenters

Data Reporting
 Reporting Descriptives (e.g., mean, standard deviation, range for 
overall sample and by group)

Data 
Transparency

 Preregistration 
Large passive sensing datasets will be ripe for p-hacking. Pre-
register analyses prior to viewing data collected or try to draw 
predictions from out of sample predictions.

 Open Code and Data 
Provide access to code and data if applicable



mHealth Wearable Heart Rate Metadata Checklist 2:
Potential Covariates

Control

Technological 
Factors

 Device Manufacturer
 Device Type
 Device Version
 Firmware Version
 Hardware (sensor type)
 Sampling Rate
 Device reliability and justification for why this level of reliability is 
adequate for the study design

Participant 
Characteristics

 Age
 Race
 Ethnicity
 Biological Sex
 Gender
 Skin tone (e.g., Fitzpatrick Skin Type)
 (e.g., Fitzpatrick Scale)
 Body Mass Index
 Wrist Circumference
 Wrist Placement

 Dominant or non-dominant
 Tight vs loose
 Naturalistic use by participants vs explicit instructions by 
experimenters

 Medical Condition
 Cardioactive Medication Use
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