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Introduction: Despite existing work examining the effectiveness of

smartphone digital interventions for schizophrenia at the group level,

response to digital treatments is highly variable and requires more research to

determine which persons are most likely to benefit from a digital intervention.

Materials and methods: The current work utilized data from an open trial of

patients with psychosis (N = 38), primarily schizophrenia spectrum disorders,

who were treated with a psychosocial intervention using a smartphone app

over a one-month period. Using an ensemble of machine learning models,

pre-intervention data, app use data, and semi-structured interview data were

utilized to predict response to change in symptom scores, engagement

patterns, and qualitative impressions of the app.

Results: Machine learning models were capable of moderately (r = 0.32–0.39,

R2 = 0.10–0.16, MAEnorm = 0.13–0.29) predicting interaction and experience

with the app, as well as changes in psychosis-related psychopathology.

Conclusion: The results suggest that individual smartphone digital

intervention engagement is heterogeneous, and symptom-specific baseline

data may be predictive of increased engagement and positive qualitative

impressions of digital intervention in patients with psychosis. Taken together,

interrogating individual response to and engagement with digital-based

intervention with machine learning provides increased insight to otherwise

ignored nuances of treatment response.
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Introduction

Schizophrenia, a primary psychotic disorder, is a serious
mental illness characterized by debilitating symptoms
including delusions, hallucinations, disorganized speech
and behavior, and diminished emotional expression (1, 2).
Current studies estimate that schizophrenia affects up to
0.64% of the United States population (3–5). However, despite
schizophrenia’s comparatively low incidence (6), it had an
economic burden of $155.7 billion in 2013 (7), and remains
a major contributor to the global burden of disease with
two-thirds of affected individuals experiencing persistent
symptoms following treatment (1, 8). Further, schizophrenia is
often comorbid with anxiety disorders and depression (9, 10).
Thus, illness burden is of particular concern, with symptom
severity shown to be negatively correlated with physical
health, psychological health, and relationships, and one in
ten completing suicide (11, 12). Despite recent improvements
in diagnostic accuracy and treatment efficacy, schizophrenia
continues to negatively impact patients’ overall quality of life
(11), highlighting the necessity for additional efforts to address
treatment response at the individual level.

Currently, the mainstay treatment for schizophrenia
includes the use of antipsychotics, often coupled with regular
psychosocial interventions (13, 14). Psychosocial interventions
can be offered as individual (supportive counseling, personal
therapy, social skills therapy, vocational rehabilitation therapy);
cognitive-behavioral; and group (interactive/social therapy)
interventions (14). Despite the relative efficacy of these
combined approaches, the side-effects of antipsychotic
treatment can prove debilitating to schizophrenia patients.
Antipsychotic side-effects may include physical symptoms,
such as movement disturbances, metabolic derangements and
weight gain, sedation, and drooling (15, 16, 17–19), as well
as emotional and cognitive blunting (20). As a result, the
integration of alternative interventions may prove useful in
reducing the side-effect burden of antipsychotics.

Research has shown promise in the use of scalable
digital therapeutics in patients living with serious mental
disorders, such as schizophrenia and bipolar disorder (21).
Although few studies have directly analyzed the efficacy of
digital interventions for schizophrenia, existing research
has suggested that this method of intervention may be
efficacious for schizophrenia treatment or management. For
example, PRIME, or Personalized Real-time Intervention
for Motivational Enhancement, is a mobile application
designed to supplement antipsychotic and psychotherapeutic
treatments for schizophrenia. The intervention was found to
be effective in improving the mood and motivation of young
patients with schizophrenia. Further, PRIME users experienced
improvements in depression, self-efficacy, and reward learning
(22, 23). Similarly, App4Independence (A4i), a community-
centric app designed for schizophrenia patients, offers forums,

appointment scheduling, and text-based functions aimed at
improving illness self-management (24). Like PRIME, A4i
showed modest reductions in symptoms of depression, further
pronounced after controlling for gender, age, and other baseline
symptoms (24).

Treatment of schizophrenia remains a challenge, partially
owing to its highly heterogeneous nature (25–29), with little
known of personalized prognostic and treatment factors. With
growing numbers of digital treatment options for mental health
in the context of this heterogeneity, it is important to understand
not only the group efficacy of such interventions, but also the
profile of those individuals most likely to benefit. With such an
understanding, individuals could be effectively “matched” to the
specific interventions most likely to improve their symptoms.

Machine learning, coupled with highly dimensional
datasets, like A4i, is uniquely positioned to address these
challenges, having shown promise in constructing personalized
models, with a capacity to accurately predict individual-level
treatment response (30, 31). Specific to individuals with
schizophrenia, an extensive corpus of research has shown
machine learning efficacious in classifying schizophrenia and
psychosis-related symptoms from neuroimaging data (32–34),
qualitative social media information (35, 36), and passively
collected smartphone data. Notably, virtual communication was
positively associated with increased negative affect measures
(37), highlighting the necessity to interrogate the driving factors
in engagement with digital interventions in individuals with
schizophrenia. Furthermore, machine learning has the capacity
to model complex relationships in large datasets, with model
introspection made possible by high power computing methods,
such as Shapley Additive Explanations (SHAP) (38). Methods,
like SHAP, address the “black box” problem of machine learning
by offering a manner of visually representing the directionality
and magnitude of those features most important in the model’s
outcome prediction. This allows for the development of
downstream digital biomarkers and phenotypes of psychiatric
disorders.

In the current study, we utilize data from an open trial
delivering the A4i intervention to persons with schizophrenia,
schizoaffective disorder, and related psychoses that found
modest symptom improvement at the group level (24), to
better understand personalized markers of digital intervention
engagement and response. We hypothesized (1) unique baseline
patient characteristics paired with machine learning would
moderately predict (r > 0.3) individual symptom response
to, engagement with, and sentiment toward A4i (an app-
delivered, digital intervention) (2) specifically, we hypothesized
that people with higher affective symptoms (e.g., depression)
and lower psychotic symptoms would have the most robust use
and response, resulting in more positive sentiment toward the
app; this hypothesis can be contextualized in research which
suggests better overall prognosis and treatment response for
patients with higher affective symptoms (39). Further, (3) we
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hypothesized that persons with higher interpersonal sensitivity
would have the strongest response to the intervention (change
in composite BSI score), given the built-in peer-engagement
application feature, which was reported in the original study
as a user-reported strength of the A4i intervention (24).
To evaluate these hypotheses, we developed three machine
learning pipelines aimed at modeling the relationship between
baseline patient characteristics and (i) response to the digital
intervention, (ii) level of engagement with the intervention, and
(iii) user sentiment toward the intervention.

Materials and methods

Participants

Participants (N = 38, 2.6% transgender, 71.1% men,
26.3% women, agemean = 31.42 ± 8.60) were included in
the final study population based on previously described
inclusion and exclusion criteria (24). The initial study design
consisted of a 3–4 week engagement with the A4i app
with pre-post assessments. The study was reviewed and
approved by an institutional Research Ethics Board; participants
provided written consent, and the protocol was registered with
clinicaltrials.gov (NCT03649815) (24).

Intervention

The A4i functionality included personalized prompts,
activity scheduling, connections to social engagement resources,
evidenced-based content tailored to management of psychotic
symptoms, a peer engagement network, daily wellness check-
ins, and passively collected phone-use information, used as a
proxy for sleep and activity (24).

Data collection and outcome metrics:
Quantitative data set

Participants provided demographic information, mobile
technology use information, and completed quantitative pre-
post symptom and intervention engagement metrics (24). The
quantitative metrics included: (a) the Brief Adherence Rating
Scale (BARS) to examine implications of A4i for medication
use (40), (b) the Person Recovery Outcome Measure (PROM)
to assess degree of engagement in the recovery process (41),
and (c) the Brief Symptom Inventory (BSI) to assess psychiatric
symptoms pre and post-intervention. The BSI comprises
domains measuring: psychoticism, somatization, depression,
hostility, phobia, obsessive-compulsive, anxiety, paranoia, and
interpersonal sensitivity (42). Additionally, A4i usage data
from each participant during the trial was passively collected,

including: (i) a count of participants’ total active interaction
with the app, (ii) the number of days each participant engaged
with the app, (iii) the participants’ average interaction with the
app per day, and (iv) app usage categorized as “low” or “high.”
Participant BSI total and subdomain scores were included in the
present analysis; BARS scores, PROM scores and demographic
information were not.

Post-intervention semi-structured
interview

A semi-structured interview was completed at the post-
A4i use assessment, which included a series of seven questions
providing qualitative feedback from the participants on the
functionality, effectiveness, and overall experience interacting
with the app (e.g., “What were your favorite features of
the app?”) (24). The complete semi-structured interview is
provided in the Supporting information section of the original
publication (24).

Semi-structured interview response
sentiment quantification

We extracted participants’ overall response sentiment
from the semi-structured interviews. Individual responses to
all questions were concatenated using Python (v3.8.3) for
uniformity across participants (43). Overall response sentiment
was derived from the concatenated qualitative data, using the
Python package TextBlob (Version 0.16.0) to assess polarity (i.e.,
the valence of the participants responses on a –1 to 1 scale, with
a lower score reflecting a more negative statement and a higher
score reflecting a more positive statement) (44).

Data preprocessing

Baseline BSI total score, baseline BSI subcategory scores, and
passively collected A4i use metric features included in modeling
were individually standardized resulting in a µ = 0 and σ = 1
within that feature. Feature standardization has been shown
to increase model efficiency and accuracy in machine learning
approaches (45), and provides a consistent value range for
features when considering their relative influence on a model’s
predictions.

Theoretical machine learning
modeling framework

We implemented a hypothesis driven framework via the
utilization of three separate ensemble machine learning models
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to interrogate individual-level factors driving (1) app efficacy,
(2) app engagement, and (3) qualitative app impressions (see
Table 1). The machine learning models implemented in this
study were as follows:

1. Symptom Severity Change: Fourteen features, including
baseline BSI total score, subcategory scores, and passively
collected A4i use metrics were used to predict change in
BSI total score (Table 1, Model 1). Change in BSI total
score was measured as the difference between baseline BSI
total score and post-intervention BSI total score (e.g., a
negative change reflects an overall decrease in reported
symptoms).

TABLE 1 Machine learning model corresponding hypotheses, features
and outcomes.

Modeling
approach

Model features Model
outcome

Model 1:
Symptom
Severity Change

Baseline BSI Composite Score
(Overall Symptoms),
Baseline BSI Anxiety,
Baseline BSI Depression,
Baseline BSI Hostility,
Baseline BSI Interpersonal Sensitivity,
Baseline BSI Obsession-Compulsion,
Baseline BSI Paranoid Ideation,
Baseline BSI Phobic Anxiety,
Baseline BSI Psychoticism,
Baseline BSI Somatization,
Total A4i Interaction,
Total Days of A4i Interaction,
Binary A4i Use (High/Low),
Average A4i Use Per Day

Change in
Composite BSI
Score

Model 2: A4i
Engagement

Baseline BSI Composite Score
(Overall Symptoms),
Baseline BSI Anxiety,
Baseline BSI Depression,
Baseline BSI Hostility,
Baseline BSI Interpersonal Sensitivity,
Baseline BSI Obsession-Compulsion,
Baseline BSI Paranoid Ideation,
Baseline BSI Phobic Anxiety,
Baseline BSI Psychoticism,
Baseline BSI Somatization

Total Interaction
with A4i

Model 3:
Intervention
Impressions

Baseline BSI Composite Score
(Overall Symptoms),
Baseline BSI Anxiety,
Baseline BSI Depression,
Baseline BSI Hostility,
Baseline BSI Interpersonal Sensitivity,
Baseline BSI Obsession-Compulsion,
Baseline BSI Paranoid Ideation,
Baseline BSI Phobic Anxiety,
Baseline BSI Psychoticism,
Baseline BSI Somatization

Semi-structured
Interview
Response
Sentiment
(Polarity)

Input features and predicted outcomes for the three interrogated ensemble models.

2. A4i Engagement: Ten features, including baseline BSI
total score and subcategory scores were used to predict
a participants’ overall interaction with the A4i app
(Table 1, Model 2).

3. Intervention Impressions: Ten features, including baseline
BSI total score and subdomain scores were used to
predict an individual participant’s sentiment toward the
intervention (Table 1, Model 3). A participants’ sentiment
was represented by the polarity score of their concatenated
semi-structured interview responses.

Practical machine learning model
framework

All machine learning modeling followed the same nested
leave-one-out (LOO) cross-validation framework (46). A nested
cross-validation framework in machine learning is efficacious
in allowing for unbiased performance estimates, regardless of
sample size (47). In this process, one subject was completely held
out, while the rest of the subjects were used as part of a simple
LOO cross-validation approach to tune the hyperparameters
of the model. This process was repeated N times so each
subject was held out at least once. We used an ensemble
approach, whereby distinct machine learning models (i.e.,
linear models, tree based models, and multilayer perceptrons)
were individually trained on the data; an approach which
has been shown to consistently outperform base algorithms
in mental health disorder related outcomes (48). Predictions
from these models were used as inputs to a final “deciding”
model, which returned a consensus score. The specific modeling
architecture and hyperparameters of the Symptom Severity
Change, A4i Engagement, and Intervention Impressions models
are provided in Supplementary Table 1. The ensemble pipeline’s
predictions were evaluated against the observed values to
determine the correlative strength (r), the proportion of the
variance in the outcome explained by the model’s predictions
(R2), and the normalized mean absolute error (MAEnorm) of
the respective ensemble model. The normalized mean absolute
error was calculated by dividing the mean absolute error by the
range of the observed outcome, offering an outcome-agnostic
representation of the model’s mean absolute error.

Model explainability

We implemented Shapley Additive Explanations (SHAP) to
aid in model interpretability by evaluating the top five most
influential features in each of the three models. Intuitively,
SHAP allows for model introspection by iteratively perturbing
the input data and assessing how this affects the output (38).
In this way, the process can determine feature importance,
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as well as the marginal contribution of each independent
variable to the predicted outcome at the patient level,
represented by an individual values positioning on the x-axis
of Figure 2. Using this information, SHAP can estimate
relative feature importance, directional relationships between
predictors and outcomes, as well as different order interactions
between variables.

Results

Predictive performance and
interpretability: Symptom severity
change

Participants’ A4i use metrics and baseline BSI scores
(Table 1, Model 1) were capable of moderately predicting change
in symptom severity (e.g., Pre-Post BSI score difference, where
a negative change corresponds to a decrease in BSI score,
and thus reduced overall symptoms) (r = 0.32, R2 = 0.10,
MAEnorm = 0.29) (Figure 1A). Model introspection via SHAP
suggested that the most influential feature for predicting change
in BSI score was interpersonal sensitivity on the baseline BSI
(Figure 2A), where participants with high baseline interpersonal
sensitivity were predicted to have a greater reduction in
psychiatric symptomatology. Furthermore, lower psychotic and
obsessive compulsive traits were predictive of a reduction
in psychiatric symptomatology across the intervention. These
findings directly address study hypothesis (1), that unique
patient characteristics will moderately predict app response,
and more specifically study hypothesis (3), which suggested
interpersonal sensitivity as a positive prognostic marker
for A4i response.

Predictive performance and
interpretability: App4Independence
engagement

Baseline symptom severity (measured by pre-intervention
BSI scores) moderately predicted participant engagement across
the A4i intervention (r = 0.39, R2 = 0.16, MAEnorm = 0.16)
(Figure 1B). The BSI subdomain depression was the most
influential feature, where participants with high baseline
depression interacted with the app more during the
intervention; however, overall BSI score showed an inverse
relationship, where participants with lower overall total
symptoms were predicted to have greater app interaction.
These findings directly address study hypothesis (1),
that that unique patient characteristics will moderately
predict person-level app engagement, and more specifically
hypothesis (2) that higher affective symptoms would
drive A4i response.

FIGURE 1

Model(s) actual versus predicted values plotted with respective
correlative strength. (A) Baseline BSI total score, subcategory
scores, and passively collected A4i use metrics were used to
predict change in BSI total score. (B) Baseline BSI total score and
subcategory scores were used to predict a participants’ overall
interaction (visualized as the log-transformation) with the A4i
app. (C) Baseline BSI total score and subdomain scores were
used to predict an individual participant’s sentiment toward the
intervention. r, Pearson’s correlation coefficient.

Predictive performance and
interpretability: Intervention
impressions

Baseline BSI scores moderately predicted valence of
interview responses (r = 0.34, R2 = 0.12, MAEnorm = 0.14)
(Figure 1C), with BSI depression scores having the greatest
importance. Specifically, participants with high baseline
depression were more positive when discussing the app in
the semi-structured interview. Interestingly, similar to the
A4i engagement model, overall BSI score showed an inverse
relationship to the BSI depression subdomain, with lower
overall BSI being predictive of more positive qualitative
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FIGURE 2

The top 5 most influential features by model. Individual dot color corresponds to the value of the feature, and location on the x-axis
corresponds to that point’s relative impact on the model output [e.g., a high-feature value (red) with a corresponding high x-axis value (SHAP
value) represents a point that strongly, positively influences the model’s outcome prediction]. (A) The most influential features from baseline BSI
total score, subcategory scores, and passively collected A4i use metrics for predicting change in BSI total score. A positive x-axis value (SHAP
value) corresponds to an increase in overall symptoms. (B) The most influential features from baseline BSI total score and subcategory scores
for predicting a participants’ overall interaction) with the A4i app. A positive x-axis value (SHAP value) corresponds to an increased interaction
with A4i. (C) The most influential features from baseline BSI total score and subdomain scores for predicting an individual participant’s
sentiment toward the intervention. A positive x-axis value (SHAP value) corresponds to an increase in qualitative A4i impressions.
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impressions of the intervention. These findings directly address
study hypothesis (1), that unique patient characteristics will
moderately predict overall app sentiment and, as in section
“Predictive performance and interpretability: A4i engagement”
– hypothesis (2) – that higher affective symptoms would
drive A4i response.

Discussion

This study demonstrates the capacity of unique patient-
level factors to predict response to a digital treatment
among patients with schizophrenia, schizoaffective disorder,
and related psychoses. Important factors included interpersonal
sensitivity, psychotic traits, depressive traits, and overall
symptom severity (as determined by baseline BSI), as well
as digital intervention interaction metrics passively collected
during the study. Subsequent analysis established factors
associated with participant interaction, engagement and general
attitudes toward the digital therapeutic intervention. As a whole,
this work aimed to investigate unique patient markers of
digital treatment response, as well as highlight those factors
most important in predicting high engagement among persons
with psychosis. Our results contribute to ongoing development
and implementation of mental health digital interventions by
identifying unique patient markers to suggest intervention
response as well as engagement.

Higher interpersonal sensitivity

The symptom severity change model (Table 1, Model 1)
predicted that participants with high baseline interpersonal
sensitivity would benefit more from the A4i intervention.
This finding may suggest that high interpersonal sensitivity
corresponds to increased participant responsiveness to the
community-centric platform of the intervention. The role of
patient interaction is highlighted by the users during the semi-
structured interviews, with one patient responding that the
function of the A4i app is to serve as “a safe space online
app based community platform where psychosis can be met
with care and empathy.” (24). Thus, in line with findings that
lack of interpersonal relationships is known to be a significant
contributor to reduced quality of life among individuals with
schizophrenia (49), patients that actively interacted with the
A4i community responded better to the intervention. Further,
these findings are congruent with the A4i intervention goals
which sought to target interpersonal aspects of psychotic
disorders (24).

A second hypothesis for higher emotional sensitivity
predicting better A4i response involves a potential association
between interpersonal-affective sensitivity and psychotic
symptom disorder severity in persons with psychosis.
Interpersonal hypersensitivity has been shown characteristic

of prodromal psychosis in clinically high risk patients (50).
By contrast, patients at later illness stages show a generalized
deficit in affect recognition, not characteristic of their earlier-
illness-stage counterparts (51). Moreover, fine recognition of
sad and neutral affective states have been inversely correlated
with measures of disorganization in schizophrenia (51). Taken
together these findings suggest (1) interpersonal and affective
sensitivity as a potential surrogate marker of earlier-, or
prodromal-, stage illness, which is likely to be more responsive
to intervention (52) and (2) higher interpersonal sensitivity as
potential marker of lower disorganization in psychotic illness,
implying a greater capacity to participate and benefit from
psychosocial treatments, such as A4i.

Lower psychotic and obsessive
compulsive traits

Conversely, participants with lower baseline psychotic traits
and/or lower baseline obsessive compulsive traits were also
predicted to benefit from the A4i intervention. Psychosis is
often characterized by marked perceptual disturbances and
disorganization, which may suggest that individuals who were
more organized were able to engage more effectively and
consistently with the intervention. Notably, individuals at risk of
psychosis are found to experience difficulties with interpersonal
relationships, manifesting as an inability to communicate
distressing psychological experiences to others (53). These
troubles with communication and experiential expression likely
also affect patients with high levels of psychotic traits resulting
in difficulties engaging with other users of A4i, and thus the
intervention overall. Similarly, intervention and community
engagement may have proven difficult for patients’ with
obsessive compulsive traits, as these may involve intrusive, and
distressing thoughts. Patients with OCD often have difficulties
recognizing affective social cues, regulating emotion (54), and
communicating (55). These difficulties likely also exist in
individuals with primary or secondary psychoses who have
obsessive compulsive traits, preventing effective engagement
with socially dependent interventions, such as A4i.

App interaction and feedback

Notably, higher baseline depression predicted both
higher A4i engagement and more satisfaction with the
app (as measured by post-intervention feedback polarity, see
Figures 2B,C). This finding is consistent with research to date
demonstrating the prognostic value of affective symptoms
(e.g., depression) in schizophrenia (39, 56, 57). In particular,
comorbid depressive symptoms have been associated with
more positive outcomes, including fewer hospitalizations and
fewer illness relapses in schizophrenia (39). Considered in the
context of the present study results, we hypothesize depression

Frontiers in Psychiatry 07 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.807116
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-807116 August 5, 2022 Time: 16:16 # 8

Price et al. 10.3389/fpsyt.2022.807116

to likewise represent a marker of ability to engage with a
multi-feature digital intervention. Intuitively, it follows that
individuals who had greater app engagement also had greater
symptom improvement (see Figure 2A) and therefore would
have greater satisfaction with the app (see Figure 2C).

In contrast to depression, higher overall symptom severity
at baseline predicted lower A4i engagement and less favorable
sentiment toward the app. We hypothesize individuals with
greater symptom severity had more disorganization and
executive functioning impairment, making it difficult to fully
engage with a multi-feature digital intervention, like A4i.
It follows that patients who interacted less with the app
would have less symptom improvement (see Figure 2A) and
therefore would have less favorable impressions (see Figure 2C).
These findings are important in light of evidence suggesting
overall lower digital app engagement among populations with
schizophrenia, likely skewed by small subgroups of heavily
engaged participants (58). Understanding the individual-level
characteristics that drive engagement and sentiment toward
digital technologies is essential for future mental health app
development and implementation.

Limitations

Despite the strengths of leveraging a LOO cross-validation
machine learning framework to investigate unique patient
markers of digital treatment response for individuals with
schizophrenia, there are a number of limitations concerning
the study sample and design that should be addressed. (1)
The original study used a 38-person sample drawn from urban
Canadian residents, limiting generalizability of the reported
(2) This study did not conduct long-term patient follow-
up, an important aspect of comprehensive treatment analyses,
thus it is unknown whether the observed improvements in
schizophrenia psychopathology will persist for these patients.
As such, the long-term efficacy of A4i, and the long-term
importance of the identified unique patient markers, cannot
be evaluated. (3) Due to the method of analysis, the present
results only reflect predictive capacity, not causality. (4) While
the BSI captures positive and negative symptoms associated with
psychotic disorders, structured interviews specific to psychosis
and schizophrenia (e.g., PSYRATS-D) were not included.
(5) The present analyses did not incorporate demographic
information or lifestyle-related information, and thus cannot
account for the manner in which demographic features or living
and work environments influenced participant engagement with
the A4i intervention.

Conclusion

The present study sought to interrogate the A4i app
as a digital intervention for schizophrenia patients via an

ensemble LOO machine learning approach, allowing insight
into the most influential, unique patient characteristics for
predicting intervention response and engagement. Notably,
high interpersonal sensitivity was predictive of total symptom
reduction across the digital intervention, and high depression
was predictive of increased digital intervention engagement
and positive qualitative impressions. Taken together, these
findings highlight the necessity for patient-level interrogation
of treatment efficacy in mental health, particularly for
schizophrenia where clinical presentation is heterogeneous.
Future work should build upon the present findings to
consider how individual demographic characteristics (e.g.,
gender, race) may influence differential engagement with a
digital intervention, particularly in individuals with psychosis.
Additionally, future work should aim to extend the current
methodology to more traditional interventions for individuals
with schizophrenia (e.g., psychosocial interventions combined
with antipsychotic use) to identify unique patient characteristics
predictive of intervention response, and thus tailor treatment
type based on an individual’s clinical presentation.
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