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Popularity of Longitudinal Assessment

• Intensive longitudinal data=densely collected data with 5+ measurements of the 
same variable
• Typically 10-300 in behavioral active data collection within behavioral sciences

• Collection and analysis of intensive longitudinal data has grown exponentially

• 385% growth in “experience sampling assessment” from 1990 to 2008 Google 
Ngram Viewer (online phrase usage tool)

• Often irregularly spaced time intervals for behavioral data

• I.E. During the night, design reasons, following the occurrence of an event



Popular Methods of Analyzing Longitudinal Data

• Examples of Models Used in Analyzing Longitudinal Data: 

• Linear and non-linear time series models (including variations of vector 
autoregressive moving average (VARMA) models)

• state-space models

• dynamical systems models

• multilevel modeling

• and many other examples.1

• Useful when researchers have preconceived notions about the number of lagged 
occasions to include in models 

1. (Boker & Graham, 1998; Box, Jenkins, & Reinsel, 2013; Browne & Nesselroade, 2005; Durbin & Koopman, 2012; Goldstein, Healy, & Rasbash, 1994)



Choosing Lags due to convenience

• The vast majority of intensive longitudinal data studies that utilize dynamic 
relationships only look at lower-order lags

• Typically lags of 1

• This strategy assumes that higher order lags are negligible

• This NOT an innocuous assumption

• When higher order lags exist, failing to account for higher-order lags leads to:

• Misleading inferential results (i.e. biased parameter estimates, with 
underestimated standard errors)



Choose Time Lags 

• Methods to choose lag times

• Traditionally chosen in an exploratory fashion using diagnostics such as auto-
and partial correlation plots

• In a confirmatory way as guided by theories

• Comparing results from model fitting at different lags1

1. (e.g., Chow, Nesselroade, Shifren, & McArdle, 2004)



Inadequacies of Previous Methods for 
Behavioral Science Data
1. Traditional exploratory methods have been designed for:

• Single-subject time series data of more substantial lengths (t ≥ 100)

• (e.g. with more than 100 time points and no missingness)

2. Confirmatory methods: 

• Computationally inefficient with large amount of lags

1. (e.g. Bottan & Perez Truglia, 2011; Buckner, Crosby, 
Wonderlich, & Schmidt, 2012; Buysse et al., 2007; Carels et al., 

2004; Starr & Davila, 2012)











Current Approach

• The current presentation:

• Novel exploratory approach for identifying optimal lags in multiple-subject, 
multivariate (or univariate) longitudinal data

• This new approach that extends previous approaches by:

• Allowing for the fitting of automated exploratory and confirmatory modeling 
of higher-order lags through a two-stage model fitting procedure.



Differential Time Varying Effect Model 

• DTVEM is a tool for diagnosing the optimal time lag intervals in equally and 
unequally spaced ILD

• Capitalizes on some of the flexible and smoothing estimation routines for 
generalized additive mixed model (GAMM) 

• Followed up with the strong estimation confirmatory modeling performance with 
vector autoregressive models within a state-space routine

1. (Wood, 2006)



Exploratory Stage Model Formula



Exploratory Stage Model Formula

• person i’s response variable, yi (where i = 1, …, n, with n
indexing the total number of subjects) 

• may be distributed as any of the members from the 
exponential family (e.g., Normal, Poisson, Gamma, 
Multinomial, etc.;)



Exploratory Stage Model Formula

• Mean function



Exploratory Stage Model Formula

• link function that maps the mean of yi into the semiparametric
predictor and 𝑔−1(ηi) in the transformation in the reverse 
direction



Exploratory Stage Model Formula

• the usual parametric components in standard linear mixed 
effects models



Exploratory Stage Model Formula

• nonparametric components wherein the effects of a series of 
covariates on the mean of the dependent variable are of 
unknown functional forms



Exploratory Stage Model Formula

• 𝑿𝑖 is the design matrix that contains person i’s fixed effects 
components and 𝜷 is the corresponding vector of fixed effects 
parameters



Exploratory Stage Model Formula

• 𝒁𝒊 is the random effects design matrix for person i and 
bi~N(0,ψb) assumed to be multivariate normally distributed 
with zero means and covariance matrix, ψb



Exploratory Stage Model Formula

• The term fk is the  smoothing function for the kth covariate, 
𝑥𝑘𝑖. (k = 1, …, K);



Exploratory Stage Model Formula

1. (Ahmad, Leelahanon, & Li, 2005; Hastie & Tibshirani, 1993)

• fo (o = 1, …, O) are O smoothing functions that allow the 
covariates in 𝑥𝑜𝑖 to have varying coefficients that may depend 
linearly or non-linearly on 𝑥𝑘𝑖
• xki may contain an indicator of time or space, in which case 

the effects of the covariates in xoi on the mean function are 
assumed to be time- or space-varying1



Varying Coefficient Example Plot



Exploratory Stage Model Formula

• the terms fp (p = 1, …, P) are P smooths of tensor products used 
to approximate the unknown effects of two interdependent 
covariates on 𝜂i.
• Means that both coefficients are allowed to vary non-

linearly to predict eta



Exploratory Stage Model Formula

• Link function in GAMM and therefore DTVEM by extension can 
handle non-normal data that conform to the exponential family
• E.G. Count and categorical data



Setting Up the Data

Take the raw data and create lagged 

variables up to the total possible lag 

(l) for both the time (t) and the data of 

interest (y).

Take the lagged data matrix and stack 

it on top of one another for each 

lagged column (yj-l), and subtract the 

lagged time variable (tj-l) from the 

time (t) to create time differences Δti,j-

l



Exploratory Stage Model Formula

• 𝑦𝑖 = [𝑦𝑖,𝑗−1, 𝑦𝑖,𝑗−2, … , 𝑦𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑘𝑖 = [∆𝑡𝑖,𝑗−1 , ∆𝑡𝑖,𝑗−2 , … , ∆𝑡𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑜𝑖 = [𝑥𝑜𝑖,𝑗−1, 𝑥𝑜𝑖,𝑗−2, … , 𝑥𝑜𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑝𝑖 = [𝑥𝑝𝑖,𝑗−1, 𝑥𝑝𝑖,𝑗−2, … , 𝑥𝑝𝑖,𝑗−𝐽 ]
𝑇

• 𝑦𝑖, is a vector 
consisting of all 
the stacked 
repeated 
measurements of 
the outcome 
variable up to, but 
not including, the 
measurement at 
time J



Exploratory Stage Model Formula

• 𝑦𝑖 = [𝑦𝑖,𝑗−1, 𝑦𝑖,𝑗−2, … , 𝑦𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑘𝑖 = [∆𝑡𝑖,𝑗−1 , ∆𝑡𝑖,𝑗−2 , … , ∆𝑡𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑜𝑖 = [𝑥𝑜𝑖,𝑗−1, 𝑥𝑜𝑖,𝑗−2, … , 𝑥𝑜𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑝𝑖 = [𝑥𝑝𝑖,𝑗−1, 𝑥𝑝𝑖,𝑗−2, … , 𝑥𝑝𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑘𝑖 is the 
corresponding 
vector of time 
differences 
between the first 
and each of the 
measurements in 
𝑦𝑖, and 𝑥𝑜𝑖 or 𝑥𝑝𝑖



Exploratory Stage Model Formula

• 𝑦𝑖 = [𝑦𝑖,𝑗−1, 𝑦𝑖,𝑗−2, … , 𝑦𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑘𝑖 = [∆𝑡𝑖,𝑗−1 , ∆𝑡𝑖,𝑗−2 , … , ∆𝑡𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑜𝑖 = [𝑥𝑜𝑖,𝑗−1, 𝑥𝑜𝑖,𝑗−2, … , 𝑥𝑜𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑝𝑖 = [𝑥𝑝𝑖,𝑗−1, 𝑥𝑝𝑖,𝑗−2, … , 𝑥𝑝𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑜𝑖 is a vector of 
predictors of 
interest that will 
be used within a 
varying-
coefficient 
framework as a 
function of time 
differences (𝑥𝑘𝑖)



Exploratory Stage Model Formula

• 𝑦𝑖 = [𝑦𝑖,𝑗−1, 𝑦𝑖,𝑗−2, … , 𝑦𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑘𝑖 = [∆𝑡𝑖,𝑗−1 , ∆𝑡𝑖,𝑗−2 , … , ∆𝑡𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑜𝑖 = [𝑥𝑜𝑖,𝑗−1, 𝑥𝑜𝑖,𝑗−2, … , 𝑥𝑜𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑝𝑖 = [𝑥𝑝𝑖,𝑗−1, 𝑥𝑝𝑖,𝑗−2, … , 𝑥𝑝𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑝𝑖 is a vector of 

the predictor that 
will be used 
within the tensor-
products with 
time differences



Exploratory Stage Model Formula

• 𝑦𝑖 = [𝑦𝑖,𝑗−1, 𝑦𝑖,𝑗−2, … , 𝑦𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑘𝑖 = [∆𝑡𝑖,𝑗−1 , ∆𝑡𝑖,𝑗−2 , … , ∆𝑡𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑜𝑖 = [𝑥𝑜𝑖,𝑗−1, 𝑥𝑜𝑖,𝑗−2, … , 𝑥𝑜𝑖,𝑗−𝐽 ]
𝑇

• 𝑥𝑝𝑖 = [𝑥𝑝𝑖,𝑗−1, 𝑥𝑝𝑖,𝑗−2, … , 𝑥𝑝𝑖,𝑗−𝐽 ]
𝑇

• In our experience, the varying-coefficient’s estimates result in 
better estimates when the relationship between 𝑦𝑖 and 𝑥𝑜𝑖 are a 
partially linear function of non-linear 𝑥𝑘𝑖. Thus, our simulations 
have only utilized the second smooth term. 



DTVEM Exploratory -> Confirmatory Stage

• Due to biased standard errors a more traditional confirmatory model is then 
undertaken

• To do this algorithm examines the local peaks and valleys

• And all nearby values that are not significantly different from the local peaks 
and valleys

• All points grabbed need to be significantly different from zero to be passed on to 
traditional stage (vector autoregressive models)

• If there are no values that are identified, DTVEM notifies the user that there are 
no significant peaks and valleys within the time series.



Stage 2 - Detrending

• 𝑥𝑘𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑗]
𝑇. • 𝑥𝑘𝑖 is a vector of 

time
• Thus the effect of 

time on the 
response variable 
is allowed to vary 
non-linearly as a 
functional smooth



Confirmatory Model Stage

Confirmatory Vector autorgression (VAR(p)) model



Confirmatory Model Stage

Confirmatory Vector autorgression (VAR(p)) model

Outcomes Lagged Regression weights



Further Exploratory Stage

• After Confirmatory:

• An intermediate stage is repeated to ensure that all of the potential lags are 
identified through a hybrid stage 1 and 2 model.

• In this intermediate stage, the matrices from stage 1 are identical.

• However, discrete lag times that were found to be significant in stage 2 are also 
controlled for through a fixed effects linear covariate



Following the Intermediate Stage

• If new peaks are identified, they are passed along to the previous confirmatory 
stage model but added as further covariates.

• If none of the peaks and valleys are significantly different from the rest of the 
time series or the peaks and valleys are not significantly different from zero, the 
stage 2 model estimates are retained.

• A loop is repeated until the intermediate stage is flat or it is unable to identify any 
new peaks and valleys.

• At the end of the DTVEM function, DTVEM returns the last stage 2 estimates. 





Simulation Results

• Simulated data with a high percentage of missing data (up to 72%), low signal-to-
noise ratios

• Univariate and Multivariate data

• Single subject and multi-subject time series

• DTVEM has high exploratory power and low Type I error rates across both 
univariate and bivariate models

• Accurate point estimates and unbiased standard errors



Empirical Example: Nervousness and Heart 
Rate
• EMA: Hourly assessments during waking times for one week

• Most participants (N = 159) completed 68.5% of prompts.

• The “nervous” item was used on a 0 – 100 slider.

• Heart rate was measured with an open-source application which 
used the camera on smartphones (Wetherell, 2013). 

• There was a total of 7,509 data points collected out of a possible 
26,880 (if prompts had occurred evenly, and each person had a 
complete sampling of every period).

• Thus, the data were 28% complete. 





Confirmatory Estimates

• Nervousness predicted itself:

• one hour later (𝛼1,1 = 0.275, 𝑆𝐸𝛼1,1 = 0.012,𝑝𝛼1,1 < .001)

• three hours later (𝛼1,3 = 0.071, 𝑆𝐸𝛼1,3 = 0.014, 𝑝𝛼1,3 < .001),

• fours later (𝛼1,4 = 0.075, 𝑆𝐸𝛼1,4 = 0.014, 𝑝𝛼1,4 < .001),

• 12 hours later (𝛼1,12 = 0.077, 𝑆𝐸𝛼1,12 = 0.020, 𝑝𝛼1,12 < .001)

• 14 hours later (𝛼1,14 = 0.082, 𝑆𝐸𝛼1,14 = 0.019, 𝑝𝛼1,14 < .001) 

• Heart rate significantly predicted itself:

• one hour later (𝛼2,1 = 0.144, 𝑆𝐸𝛼2,1 = 0.015, 𝑝𝛼2,1 < .001)

• three hours later (𝛼2,3 = 0.037, 𝑆𝐸𝛼2,3 = 0.016, 𝑝𝛼2,3 = .020)

• Nervousness significantly predicted heart rate:

• Positively: 8 hours later (𝛾1,2,8 = 0.055, 𝑆𝐸𝛾1,2,8 = 0.020, 𝑝𝛾1,2,8 = .007)

• Negatively: 12 hours later (𝛾1,2,12 = -0.052, 𝑆𝐸𝛾1,2,12 = 0.024, 𝑝𝛾1,2,12 ) = .030)



Empirical Example:
Temporal Stability of Personality 

Impairments
• N = 248

• 14-day daily diary study

• Found evidence of oscillating personality impairment, and levels of 
personality dysfunction exacerbated the oscillating patterns



Confirmatory Estimates



3D Plot of Confirmatory Estimates of 
Suicidality Trajectories Across Time



Summary

• DTVEM is a good method that is able to correctly identify true trajectories with 
high precision with small or large amounts of data points (as few as 14 per 
person)
• Small (N =1) or large sample sizes (N > 1)

• And data with low signal to noise ratios (or higher)

• Thus, DTVEM is a promising and flexible approach that allows researchers to 
consider all the potential time relationships between a construct and itself or 
other constructs. 





Installing DTVEM

• Install R

• Download the DTVEM R Package here:

• http://www.nicholasjacobson.com/project/dtvem/

• Install the required dependencies:

• install.packages(c(“mgcv”,“plyr”,“zoo”,“reshape2”,“Rcpp”,“OpenMx”))

• Note that in Windows you will also need to install Rtools

• Load DTVEM:

• library(DTVEM)

http://www.nicholasjacobson.com/project/dtvem/


Important inputs

• “X”
• differntialtimevaryingpredictors
• outcome
• controlvariables
• data
• ID
• Time
• predictionstart
• predictionsend
• Predictionsinterval



Useful inputs

• k,k2,k3,k4
• Controls the number of k selection points used in the model points – allows for more 

or less model bend in the exploratory stage

• standarized
• Can person-standardize or person-center data for you

• ResidualAnalysis
• Detrends the data for you

• gamma
• Controls the penalization of wiggliness in the exploratory stage



Answering Emailed Questions

• What does k really mean?
• k is a parameter that affects the number of degrees of freedom available for a 

smooth
• Note that the upper number of k is (t-1)
• This only affects the exploratory stage and not the confirmatory stage estimation

• If X predicts itself 8 time points later, does that mean in other words that 
the value at the 8th time point can be determined by the values at all time 
points leading up to the 8th?
• This isn’t quite right, if there is an autoregressive relationship at lag 8, then it 

suggests that a value predicts itself 8 time units later (it doesn’t imply that there is 
also a relationship between a variable an itself 1-7 time units later if it only occurs at 
lag 8)



• How do the reported beta values correspond to the plots of beta coef vs time?
• The plots that are depicted are from the exploratory stage of DTVEM
• Note that these plots are of time differences (a continuous operationalization of a time “lag” 

which is discrete)
• In a plot of X predicting X, this describes the relationship between X and itself across later 

time periods
• This can give us a sense of the data, but the final time estimates should be used in drawing 

firm inferences

• What is an appropriate threshold for missingness?
• This is entirely case dependent, and there’s no firm threshold for “too much” missingness. A 

longer time series can make up for greater missing values associated with the time series.
• DTVEM can actually perform well in cases with ridiculous periods of missingness (i.e. 90% or 

more of data missing data) if there are enough time points otherwise



• For assessments two or three times per week, would it make more sense for the 
DTVEM input matrix to have weekly time points averaging the two values for a 
guaranteed value at each time point or daily time points where about half of the 
values are NA?
• This would depend a bit on the a priori design and the desired estimation period.
• Not average the values and just to record time in the unit of “days” though this would 

produce a large degree of missing data (one of the potential benefits would be greater 
precision in answering the smaller time-lagged relationships, but this could be problematic if 
it were systematically missing).

• On the other hand, if there’s very little data over certain intervals (i.e. it’s always on Mondays 
and Thursdays), and not jittered, I would consider thresholding values in “half-weeks” as this 
will increase the precision of the smaller time intervals).

• I provide some functions to determine the effects of these blocking estimates in 
the LAG function, by having DTVEM do the blocking before and after. You can 
then look at the similarity/differences in the exploratory blocked estimates. 


