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Abstract: Prior research has recently shown that passively collected sensor data collected within the
contexts of persons daily lives via smartphones and wearable sensors can distinguish those with
major depressive disorder (MDD) from controls, predict MDD severity, and predict changes in MDD
severity across days and weeks. Nevertheless, very little research has examined predicting depressed
mood within a day, which is essential given the large amount of variation occurring within days.
The current study utilized passively collected sensor data collected from a smartphone application
to future depressed mood from hour-to-hour in an ecological momentary assessment study in a
sample reporting clinical levels of depression (N = 31). Using a combination of nomothetic and
idiographically-weighted machine learning models, the results suggest that depressed mood can be
accurately predicted from hour to hour with an average correlation between out of sample predicted
depressed mood levels and observed depressed mood of 0.587, CI [0.552, 0.621]. This suggests that
passively collected smartphone data can accurately predict future depressed mood among a sample
reporting clinical levels of depression. If replicated in other samples, this modeling framework may
allow just-in-time adaptive interventions to treat depression as it changes in the context of daily life.

Keywords: major depressive disorder; digital phenotyping; digital biomarkers; machine learning;
ecological momentary assessment

1. Introduction

As students leave their homes and enter college, they have to cope with numerous adjustments
that follow from their transition to college, including academic, social, personal or emotional and
institutional attachment [1]. Relative to non-college peers, college students are more likely to suffer
from symptoms of depression but less likely to seek treatment [2]. Major depressive episodes are most
prevalent between 18 and 25 years old, [3] which coincides with the period in which most students
enter college. Studies have found that an increasing number of college students have experienced
“severe psychological problems”, including suicides and crisis management, in recent years [4] and
that mental health issues are affecting up to eight times as many college students as it did in the Great
Depression era [5]. This implies that current undergraduate students are more prone to the fatal
conditions associated with major depressive disorder (MDD) such as cardiovascular disease, diabetes
mellitus [6] and notably death by suicide [7]. In addition to the detrimental health risks, depression is
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also associated with lower grade point averages, dropping more courses and missing more classes,
exams, and assignments as well as social activities [7]. It is thus critical to find a method that better
predicts depression and facilitates diagnosis and intervention, ideally by using passively collected data
through a technology owned by a staggering 85% of American undergraduates [8].

A variety of studies have attempted to predict depression severity from smartphones and wearable
sensors during one cross-sectional timepoint [9–17]. In almost all studies, prior research has shown a
significant relationship between predicted depressive symptoms severity using passive sensor data
and actual symptom severity, with associations ranging from a correlation as high as 0.55 on a specific
feature, 0.74 area under the curve receiver operator characteristic curve (AUC), F1 score of 0.85 and
accuracy ranging from 86.5 to 89.4% (73–89% sensitivity and 91–97% specificity).

Other research has focused on predicting changes in depression severity across varying numbers
of weeks, including across ten weeks via mobile phone location sensor data [14], eight weeks via
smartphone mobile sensing and support [18], twelve weeks via smartphone data [19,20], eight weeks
via a smartphone-based monitoring system [21], twelve weeks in bipolar patients via smartphone
behavior and activity monitoring [22], across twelve weeks in bipolar patients via smartphone sensors,
specifically inertial sensors and GPS traces [23], thirteen weeks via smartphone sensors and wearable
sensors [24], nine days via smartphone sensors [25], one week via geographic location data [26],
two weeks via smartphone-based multi-modal sensing [27], three and six week periods via mobile
phone sensors and location data [11], eight weeks via smartphone keystrokes [28], and a few weeks
via a smartphone-based system for gathering data about social and sleep behaviors [29]. Such data
has tended to find a significant relationship between predicted depressive symptoms severity using
passive sensor data and actual symptom severity, with associations ranging from an area of 0.74 under
the AUC curve, F1 score ranging from 0.77 to 0.85 and accuracy ranging from 59.1 to 84.9% (62.3–97%
sensitivity, 47.3–87.2% specificity). Nevertheless, there is sparse research looking at depression within
short-time fluctuations in the context of daily life.

In contrast to the many studies that have examined passive sensor data in predicting depression
severity across weeks to months, few studies have examined predicting depressed mood across hours
or days [13,30,31]. Importantly, shifts in MDD symptoms occur rapidly with substantial fluctuations
occurring over the course of a day or even hour-to-hour [32–35]. Consequently, it is essential to predict
MDD symptoms across intervals as short as hours. Canzian and Musolesi (2015) predicted daily
mood by examining daily location data from smartphone sensors, finding that geolocation data was
correlated with depression severity on a day-to-day basis and that geolocation data could be used
to predict dichotomous depression severity from 1 to 14 days later. Pratap et al. (2019) predicted
daily dichotomized depressive severity within individuals and variance explained across individuals,
finding that idiographic models could predict the depression scores in a sample of persons at clinical
levels of depression. Lastly, Burns et al. (2011) predicted dichotomized depression 5 times per day using
smartphones sensors. Of these studies, two of three studies found strong agreement between predicted
and observed daily depression outcomes (although this depended upon the analytic approach) [30,36],
whereas one study found that they were unable to significantly predict depressed mood within the day
in a small sample [31].

Note that there are some substantial limitations to prior studies that predicted depression in
intensively sampled periods which should be addressed. Firstly, each of the prior studies dichotomized
their depression outcomes when examining their primary outcomes, rather than looking at whether
depressed mood could be predicted across a continuum [13,30,31]. Secondly, two of the three studies
did not examine depressed mood within days, which neglects the substantial mood changes in MDD
across a single day [32], rapid mood fluctuations on an hourly basis [33,35,36], and a great deal of
variation in depressed mood not being stable across more than several hours [37]. Consequently,
most prior research is unable to adequately translate to inform just-in-time adaptive interventions
(JITAI) [38,39], as this research might miss important times in which persons might be experiencing
depressed mood fluctuations. Moreover, the one study that did examine intraindividual changes in
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depressed mood across the day had a small sample size (N = 11), and also added an intervention [31].
Consequently, research is needed to examine the context of intraindividual shifts within days across a
continuum of depressed mood during its naturalistic course.

Of the current studies, research has increasingly highlighted the importance of considering
large interindividual differences in MDD which may diminish model generalization to other
persons [13,40–43]. Although such research has favored idiographic modeling techniques over
between-person work [44], this shift as an either idiographic or nomothetic methods as dichotomous
decisions is a contrived dichotomy [45]. In contrast, idiographic and nomothetic models might be
balanced by weighting an individual heavily, but still being informed by the general context of others,
which has been proposed in prior reviews [46].

The current work integrates several types of passive sensing data including integrating several
different types of signals including physiology, movement, location, light, and phone calls to predict
future changes in depressed mood in a sample of persons at clinical levels of depression. Importantly,
this is the first study to integrate both passive mobile sensor data and physiology [47]. We hypothesized
that we could significantly positively predict depressed mood across time in a sample of undergraduates
with MDD.

2. Materials and Methods

2.1. Participants

Participants (N = 31, 64.52% female, M age = 19.129, age range 18–27, 67.74% Caucasian, 6.45%
African American, 3.22% Hispanic/Latino, 16.12% Asian American, and 6.45% Other) were recruited
to participate in a study on predicting mood. Participants were recruited from an undergraduate
participant pool. To qualify for the present study, participants mood scores needed to exhibit significant
variation in their mood across time based on a previously utilized interquartile range [13,48], note this
requirement was put in place to be conservative as the predictive performance of these models would
likely be much higher in the absence of substantial change. The depression severity of the sample was
as follows: 6.45% [2] of the sample met moderate depression severity, 38.7% [12] of the sample met
severe depression severity, and 54.8% [17] met very severe depression severity [49]. Thus, the majority
of persons included in the current sample were very severely depressed. All participants gave their
written informed consent to participate in the study and Pennsylvania State University approved
the study.

2.2. Protocol

Participants were recruited from a subject pool in a large university in the Northeast. Participants
were recruited via an online portal and were able to enroll in the study at this point, and they were
granted participation credit for participating in the current study. Participating in this course credit
counted towards their introductory-level psychology course. To participate in the current study,
participants were required to own an Android based phone. Participants then attended an introductory
session where they were asked to install the “Mood Triggers” application on their phones. Mood
Triggers is an application that collects ecological momentary assessment data and passive sensing data
and gives users feedback about which features most strongly predict their anxiety and depressed mood.
At this point participants completed baseline measures (i.e., the Depression Anxiety and Stress Scale).
Participants were also asked to input the hours they stated that they would be awake over the following
seven days, by inputting their bedtimes and wakeup times. Following this point, participants were
prompted to rate their depressed mood once per hour and a heart rate assessment for the times that
they indicated that they would be awake (note that participants also completed other measures outside
the bounds of the current study). During study enrollment passive sensor data was also passively
collected throughout the study period. Participants then returned to the laboratory where their data
was downloaded from their phone approximately eight days later.
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2.3. Measures

2.3.1. Baseline Depression Severity

Depression Anxiety and Stress—Depression Scale. This scale was used to measure the magnitude
of depression based on responses from a 14-item self-administered questionnaire. The scale assesses
dysphoria, hopelessness, devaluation of life, self-deprecation, lack of interest/involvement, anhedonia,
and inertia, which are all core symptoms of MDD [50]. Examples of items on the scale includes
“I couldn’t seem to experience any positive feeling at all” and “I just couldn’t seem to get going”.
Participants rate on a 4-point scale the extent to which such a statement applied to them over the
past week. The maximum and minimum possible scores are 42 and zero, respectively. Higher scores
indicate greater depression. Internal consistency reliability has been demonstrated with Cronbach’s
alpha values of 0.97 for the total scale and 0.96 for the Depression scale [51]. Test-retest reliability has
been demonstrated by a correlation of 0.713 between two administrations of the Depression scale across
two weeks [52]. Discriminant validity has been demonstrated by studies showing that this measure
is capable of discriminating depression from other disorders such as panic disorder and generalized
anxiety disorder [52], performing best in the mild-moderate severity [53]. Convergent validity of this
instrument has also been demonstrated by a strong correlation as high as 0.75 with various measures
of depression [52].

2.3.2. Dynamic Depressed Mood

Dynamic depressed mood was measured using the “sad” and “lonely” items of the Positive and
Negative Affect Schedule Expanded (PANAS-X). The two items assess to what extent participants felt
those two negative emotions, which are both core constructs to MDD. Participants were asked, once
per hour for each hour they were awake, to rate on a 100-point scale the extent to which they felt (1) sad
and (2) lonely “right now” (at the time of data collection). Ratings were obtained every hour using
the Moment instructions of the PANAS-X scale, as the current study aims to predict hourly depressed
mood. The maximum score of 100 indicates that the participant feels a certain emotion “extremely”,
and the minimum score of zero indicates “not at all”. Higher scores on sadness/loneliness indicate
greater depressed mood. Prior research suggests loneliness is strongly linked to major depressive
disorder [54–57]. In addition to loneliness, sadness is another core construct to MDD. Reis (1989)
has identified sadness and loneliness as two key measures of depressed affect in a sample of young
adolescent mothers where 67% were depressed, with the “sad” and “lonely” items reporting respective
correlations of 0.80 and 0.65 in a Varimax rotated matrix of CES-D Depression scores [58]. In particular,
it may be worthy to note that the two items were more strongly associated with depression than the
“depressed” item itself (which had a coefficient of 0.49), suggesting that self-reported sadness and
loneliness may be strong predictors of depression (thus corroborating/justifying the current study’s
use of the “sad” and “lonely” items to assess dynamic depressed mood). Furthermore, another study
demonstrated strong convergent validity (r = 0.66 to 0.67) between sadness and loneliness [59].

2.3.3. Passive Sensor Data

A number of features were passively collected from participants including: (1) direct location
based information: (1a) GPS coordinates (latitude, longitude), (1b) location accuracy, (1c) location speed,
and (1d) whether the location-based information was based on GPS or WiFi; (2) location type based
on the Google Places location type (e.g., University, gym, bar, church); (3) local weather information,
including (3a) temperature, (3b) humidity, (3c) precipitation, (2) light level, (3) heart rate information:
(3a) average heart rate and (3b) heart rate variability; and (4) outgoing phone calls.

The sensing data was indexed once per hour on the hour. This decision was adopted due to the
ecological momentary assessment design, and in order to prevent excessive battery drain. In particular,
using the GPS location more frequently can cause considerable battery drain. The app defaulted to
use GPS location when the user did not have the location services disabled. However, when the GPS
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location was disabled, the app collected location-based information from WiFi (and we used this as a
feature as noted above). The type of location was then processed to codify whether the nearest location
based on Google Places as well as the local weather information as indexed through the National
Weather Service API. To keep data collection consistent, we summed the number of outgoing phone
calls per hour.

Note that heart rate was measured by asking subjects to press their finger against the rear camera
for 30 s, and the application measured the rapid changes of color in their finger over the 30 s period.
The application noted the timing of the varying degrees of redness in the image, with high redness
values corresponding to a pulse. Average heart rate was based on the average of the times between
beats, whereas heart rate variability reflected the root mean square of successive differences of these
beats. Results have shown that these methods have high convergence with traditional measures
(r = 0.98–1.00 with heart rate, and r = 0.90–0.97 with Root Mean Square of Successive Difference
[RMSSD]) [60].

2.4. Planned Analysis

All modeling was accomplished via machine learning algorithms. The goal of the modeling
strategy was to try to utilize the past 24 h of sensor data to predict the next hour chance of depression
symptom severity based on the passive data from the next hour. All models were evaluated based on
out of sample model predictions. Due to the nature of time-series data it is important that the data
training and validation proceeds in a way that does not artificially reverse temporal directionality
(i.e., using a current sensor to predict an outcome that occurred in the past). Consequently, models
need to be trained based on only on data from data that occurred within the past to predict present
moment data. Consequently, we chose 24-h rolling windows to predict the outcome. We chose this
strategy rather than all utilizing all previously observed data as this might affect the model precision
over time; whereby the precision of the model might change as a function of the length of time in the
study. As we wanted to optimize whether this procedure would be valid if trained on data from one
day and generalized to the hour following this period, we chose not to utilize all prior data, but to use
this windowed approach.

Modeling proceeded in two primary phases: (1) nomothetic modeling, and (2) idiographically-
weighted modeling. First, we modeled the intraindividual variability using a nomothetic extreme
gradient boosting algorithm (XGBoost) using the passive sensor data to arrive at common model
predictions of intraindividual variability. These predictions were not directly of interest, but were only
utilized as secondary features for the idiographically-weighted modeling. See Figure 1 for the training
and cross-validation scheme for the nomothetic model of intraindividual variation. In this second
phase, all features and the nomothetic predictions made for each person were modeled using the
random forest models. Here we chose random forest models over extreme gradient boosting because
of the computational efficiency of random forests compared to extreme gradient boosting, where we
trained a new model to make idiographic predictions for each person (i.e., 31 persons × 144 out of
sample predictions = 4464 idiographically-weighted models). Note that a grid search was used to
optimize the number of trees to grow (based on a sequence of length three between the number of
predictors) and to select the split tree rule based on variance or extremely randomized trees [61,62].
Models were optimized based on their performance in the training set and internal cross-validation set
(not the test set).



Sensors 2020, 20, 3572 6 of 16
Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

 

Figure 1. This figure describes the strategy for cross-validation for group-based nomothetic models. 
Note that the only the past 24 h periods were utilized to train the next hour, and a separate model 
was trained for each hour. 

A very important step in this modeling approach was to again utilize the fully sample data, but 
to weight a given persons’ predictions much more heavily where an individual was weighted at 1, 
and all other persons in the model were weighted 0.2, such that the patterns in model training 
strongly favored a person’s idiographic patterns. See Figure 2 for the idiographically-weighted cross-
validation scheme. All presented results are based on multiple imputed data. 

0 20 40 60 80 100 120 140 160 180

Model 144

Model 143

…

Model 5

Model 4

Model 3

Model 2

Model 1

Study Hours

Nomothetic Models

Train Test Omitted

Figure 1. This figure describes the strategy for cross-validation for group-based nomothetic models.
Note that the only the past 24 h periods were utilized to train the next hour, and a separate model was
trained for each hour.

A very important step in this modeling approach was to again utilize the fully sample data, but
to weight a given persons’ predictions much more heavily where an individual was weighted at 1,
and all other persons in the model were weighted 0.2, such that the patterns in model training strongly
favored a person’s idiographic patterns. See Figure 2 for the idiographically-weighted cross-validation
scheme. All presented results are based on multiple imputed data.

We also ran sensitivity analyses. Based on comments from an anonymous reviewer, we also tested
whether the model results generalized across racial groups using a multilevel model (outcomei,t ~ β0 +

β1*predictioni,t + β2*race + β3*predictioni,t*racei + ui), where β3 reflects the predictive performance
between the prediction and the outcome as moderated by race for individual i at time t. Based on a
second anonymous reviewer, we also tested whether the relationship between prediction and outcome
was significant when controlling for the lagged time outcome (in case the model was just carrying
forward prior timepoints using the following model (outcomei,t ~ predictioni,t β0 + β1*predictioni,t

+ β2*laggedoutcomei-1,t + ui).These models tested [1] whether the predictive performance varied
significantly across racial groups and [2] whether the models were just learning to carry forward the
last observed data point.
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3. Results

3.1. Compliance

The average participant completed a total of 51.74 prompts (range 32–93). There was a total of
1982 data points on hourly depressed mood in the current study.
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3.2. Sensing Data

The sensing data evidenced both interindividual and intraindividual variability (see Figure 3).Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 
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each subject. 

Figure 3. This plot depicts the percentile of the sensor values for each of the sensors across time for
each subject.
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3.3. Predicting Depressed Mood

The results suggested that the predicted depressed mood scores were highly correlated with
the observed depressed mood scores from the models (r = 0.587, 95% CI [0.552, 0.621]), see Figure 3.
Note that this includes both intraindividual variability and interindividual variability.

3.4. Idiographic Predictions

In addition to being interested in predicting depressed mood across all conditions, we were also
interested in predicting only intraindividual variability within each person (see Figure 4). The results
suggested that there was significant intraindividual variability predicted with an average correlation
of 0.376, 95% CI [0.226, 0.508]. The results also suggested that the models significantly predicted
intraindividual variability for all but one person (see Figures 5 and 6), and even for this person the
correlation coefficient bordered on the edge of significance r = 0.18 CI [−0.022, 0.299]. On the other
hand, the largest correlation was r = 0.731, 95% CI [0.645, 0.799].Sensors 2020, 20, x FOR PEER REVIEW 10 of 17 
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idiographically-weighted models.
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Figure 6. This model describes the correlation coefficient between the predicted and observed
changes in the hourly mood for each participant. The vertical dotted line indicates the average of the
correlations coefficient (as correlations do not scale linearly, this was done by computing r-to-Fisher’s
Z transformations, taking the average, and then Fisher’s Z-to-r transformations). The dots represent
the individual correlations, and the horizontal lines represent the confidence intervals around the
correlation coefficient.



Sensors 2020, 20, 3572 11 of 16

3.5. Follow-up Sensitivity Analyses

In our first sensitivity analysis, we checked whether race significantly moderated the predictive
accuracy. The results suggested that there was no significant interaction between race and the
model prediction, suggesting that race did not significantly moderate predictive performance
(F(4, 3693.7) = 0.754, p = 0.555), which suggests that there was no significant impact of race on the
model’s predictive performance. In our second sensitivity analysis, the model predictions continued
to predict depression when controlling for the prior lagged depression (i.e., β1 = 0.543, SE = 0.016,
t (4353) = 34.877, p < 0.001), suggesting that the main findings above were not simply a result of the
model carrying the last outcome forward in time.

4. Discussion

The current study examined the ability to utilize idiographically-weighted machine learning
models and passive sensor data to predict the hourly mood across a week a cohort of undergraduate
participants at or above moderate to very severe levels of depression severity. The results suggested
that the correlation between observed and predicted hourly mood was significant, positive, and strong
(r = 0.587). Given that the data were trained using future predictions in 24-h intervals, this suggests
that a single day of passive sensor data can strongly and accurately predict the hourly depressed mood.

Notably, another goal of the current study was to examine how well these idiographically
weighted models generalized to each person by only examining the person-specific relationships of the
predicted and observed mood in the current study. The results suggested that there was a moderate
strength in the correlation between the idiographic predictions of depressed mood for each person
(r = 0.376). Nevertheless, there were also significant differences in the strength of the effect across
persons. The relationship between predicted and observed depressed moods for each participant was
significant for all but one person (i.e., 97% of the sample). Even for this participant, the correlation
was still positive, and the lower confidence interval was close to 0. On the other end, the idiographic
correlations between predicted and observed depression severity were quite high for other participants
(with the strongest idiographic correlation at r = 0.731). Given that race did not moderate the predictive
performance, future research should examine between-person models which may help to explain
varying levels of predictive performance across persons. In particular, anxiety is related to digital
biomarkers [63,64] and is highly interrelated to depression across time [65–68]. Additionally, future
work should also consider potential digital phenotypes of observed environmental stressors, given
their potential for societal impacts on mood [69,70].

The current research extends prior research in several notable ways (see Table 1). Although one
very small study showed that depressed mood could not be accurately predicted when operationalized
as a dichotomous variable within the day (i.e., either depressed or not depressed) [31], the current
research suggests that depressed mood can be significantly positively predicted within hour-to-hour
time windows when operationalized continuously. This corroborates the general pattern of findings
across predicting dichotomous depressed mood in longer time scales (i.e., daily mood instead of hourly
mood), although again this suggests that depressed mood can be also be accurately predicted when
operationalized across a continuum, rather than just considered as dichotomous [13,30].

Taken together, these results suggest that passive sensor data are best capable of detecting
fluctuations in depression severity not when depressed mood is considered as a dichotomous variable,
but rather when measured continuously within shorter hour-to-hour time windows. Therefore,
the current study is able to not only predict depression but also estimate with high accuracy hourly
mood changes in undergraduate students with varying levels of depression severity.
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Table 1. This table describes prior studies that have used predictive modeling to predict future
depressive symptoms and have reported predictive outcome metrics among general samples or samples
high in clinical depression, but not meeting criteria for other primary diagnoses (e.g., bipolar disorder).

Study Timescale Design Summary Result

[18] 8 weeks smartphone mobile sensing
and support

59.1–60.1% accuracy, 62.3–72.5%
sensitivity, 47.3–60.8% specificity

[24] 13 weeks smartphone sensors and
wearable sensors R2 = 0.44, F1 = 0.77

[11] 3–6 weeks mobile phone sensors and
location data AUC = 0.88

[30] 1–14 days later location data from
smartphone sensors

71–74%-sensitivity,
78–80% specificity

[13] daily smartphone sensors median area underthe curve
[AUC] > 0.50) for 80.6% of persons

Current
Study Hourly smartphone sensors r = 0.587 across persons, r = 0.376

within persons

The current study has many notable strengths. Firstly, this study demonstrated the ability to
predict hour to hour depression using digital phenotyping methods in the present sample, which is the
shortest interval tested in research to date. The ability to predict depression in these short intervals
may be particularly important in translating these assessments to just-in-time adaptive interventions,
as it might facilitate timely intervention with accuracy down to the hour. Secondly, this study is the
first known study to combine physiological assessments (i.e., heart rate and heart rate variability
using photoplethysmographic signals) with digital phenotyping of depression [47]. Thirdly, this study
demonstrates that, beyond predicting a dichotomous depression outcome, digital phenotyping of
smartphone sensor data was capable of detecting continuous fluctuations in depression severity in the
present sample.

Nevertheless, it is important to also discuss the limitations of the current data collection. Firstly,
although the majority of the sample fell within the very severe range of depression range, this was
based exclusively on a self-report assessment. Consequently, future research is needed to determine
whether this research generalizes to a sample of persons meeting MDD criteria based on a clinical
interview. Moreover, although this research demonstrated that digital phenotyping could be used to
predict moment-to-moment depression in a sample of undergraduate students, it remains an important
and unknown question whether the current research generalizes to persons with types of samples
(e.g., persons with MDD in outpatient settings, older adults). As such, future work should be devoted
to determining whether the same methods can generalize to those with MDD. Although the current
research examined depressive mood features that appear to be particularly salient in MDD (i.e., sadness
and loneliness), the current research only examined two depressive mood components. Future research
should address whether the current research extends to a range of depressive mood constructs which
could fluctuate intensively in daily life outside the bounds of depressed mood itself (e.g., lethargy,
behavioral activation). The current research should also be extended to future settings outside the
context of a mood tracking applications.

Taken together, the current research continues to build on prior research to suggest that
digital phenotyping using passive smartphone sensor data may be a powerful tool in capturing
moment-to-moment shifts in depressive moods among those at severe to very severe levels of MDD.
Future work should examine the potential clinical utility of the present findings by using such types of
digital phenotyping to inform both adaptive interventions and just-in-time adaptive interventions.
With the promise of current assessments in detecting fine-grained changes in depressed mood across
time, digital phenotyping and machine learning may facilitate a new area of time-specific precision
medicine to enhance care scalable among those with MDD.
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