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Abstract

With the recent growth in intensive longitudinal designs and the corresponding demand for methods to analyze such data, there has

never been a more pressing need for user-friendly analytic tools that can identify and estimate optimal time lags in intensive

longitudinal data. The available standard exploratory methods to identify optimal time lags within univariate and multivariate

multiple-subject time series are greatly underpowered at the group (i.e., population) level. We describe a hybrid exploratory–

confirmatory tool, referred to herein as the Differential Time-Varying Effect Model (DTVEM), which features a convenient user-

accessible function to identify optimal time lags and estimate these lags within a state-space framework. Data from an empirical

ecological momentary assessment study are then used to demonstrate the utility of the proposed tool in identifying the optimal time

lag for studying the linkages between nervousness and heart rate in a group of undergraduate students. Using a simulation study, we

illustrate the effectiveness of DTVEM in identifying optimal lag structures in multiple-subject time-series data with missingness, as

well as its strengths and limitations as a hybrid exploratory–confirmatory approach, relative to other existing approaches.
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Since the 1990s, studies utilizing intensive longitudinal data

(ILD; e.g., ecological momentary assessment, experience

sampling, or physiological measurements) have grown expo-

nentially in popularity. For instance, Google Ngram Viewer,

an online phrase-usage graphing tool, suggests that publica-

tions with the term Bexperience sampling assessment^ had

grown by 385% in 2008, relative to 1990 (Michel et al.,

2011). Among the most popular ILD designs in the behavioral

sciences are variations of the multivariate, multiple-subject,

replicated time-series design (Nesselroade & Ford, 1985),

wherein intensive repeated measures of multiple variables

within relatively short time lengths are collected frommultiple

subjects (prototypically, about four or five times daily over the

course of a week; Bolger & Laurenceau, 2013; Nesselroade &

Ford, 1985; Shiffman, Stone, & Hufford, 2008).

Coinciding with its increased prevalence, there has been

great progress in analyzing ILD (Walls & Schafer, 2006).

This includes linear and nonlinear time series models (e.g.,

variations of vector autoregressive moving average

[VARMA] models), state-space models, dynamical systems

models, multilevel modeling, and various other examples

(Boker & Graham, 1998; Box, Jenkins, & Reinsel, 2013;

Browne & Nesselroade, 2005; Durbin & Koopman, 2012;

Goldstein, Healy, & Rasbash, 1994). Importantly, the ad-

vancement of new methods has increased the variety of re-

search questions that can be answered by ILD.

In a discrete-time modeling framework, one model varia-

tion of interest is a vector autoregressive model of order p

[VAR(p) model], in which multivariate measurements of a

set of endogenous (dependent) variables from up to p mea-

surement occasions ago (i.e., t – 1, t – 2, . . . , t – p) are used to

explain these variables’ current values at time t. VAR models

continue to serve as an important basis for many substantive

studies and new methodological innovations (Bringmann et

al., 2017; Chow, Hamagani, & Nesselroade, 2007; Epskamp

et al., 2018; Gates, Molenaar, Hillary, Ram, & Rovine, 2010).

Values from previous occasions are referred to as lagged re-

sponses, with the number of lags defined as the number of

backward shifts in measurement occasion such that a lag-0

response refers to the current response at time t, a lag-1 re-

sponse refers to the response at time t – 1, a lag-2 response

refers to the response at time t – 2, and so on. Relatedly, p in a
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VAR(p) model is denoted as the lag order of the VAR process.

The VAR(p) model is expressed as

yi;t ¼ A1yi;t−1 þ A2yi;t−2 þ…þ Apyi;t−p þ εi;t ð1Þ

where yi, t represents an M × 1 vector of observed variables

measured on occasion t, Ap is an M × M matrix of regression

coefficients containing the autoregression and cross-

regression coefficients from lag p (i.e., from time t – p) on

the m observed variables at time t; and εi, j is anM × 1 vector

of residuals (process noises). A VAR(p) model can also be

conceived as a set of difference equations or equivalently,

continuous-time differential equation models in which the rate

of change, change in the rate of change, and other higher-order

changes are defined as unfolding over a time interval, ∆t, of

1.0 (Hamilton, 1994).1 In practice, discrete-time models such

as VAR(p) models have typically been fitted to data measured

at discrete, mostly equally spaced intervals (aside from occa-

sional missingness). Most often, the measurement interval in a

study is assumed by design to correspond to ∆t = 1 in the

underlying difference or differential equation model.

The measurement intervals utilized for data collection have

direct implications on the strengths of the regression coeffi-

cients linking the lagged responses to the current responses at

time t—a point that has been brought up by several re-

searchers in advocating direct use of continuous-time models

over discrete-time models (Kuiper & Ryan, 2018; Voelkle &

Oud, 2013). We will return to this point in the Discussion

section. For now, suffice it to say that when researchers have

equally spaced data, fitting discrete—as opposed to continu-

ous—time to the data often has some practical advantages. For

instance, a wide and well-established array of tools are avail-

able in the statistical and econometric literature for diagnos-

ing, exploring, and interpreting results from discrete-time

models, particularly those involving complex lag structures

(e.g., when p is high, and/or when different processes show

distinct optimal lag orders). Inference and interpretations of

continuous-time models have thus far been limited to those

involving a lower lag order, which, in a continuous-time

framework, mirrors the highest-order changes included in a

differential equation of choice (e.g., rate of change is a first-

order change, acceleration/deceleration is a second-order

change). Tools for model exploration are still nascent, and

estimation of continuous-time models is often characterized

by greater numerical difficulties than estimation of their

discrete-time counterparts of the same order.

When a VAR(p) model is determined to be the model

of choice and researchers have a priori knowledge

concerning the true lag order, p, of the process, re-

searchers can proceed directly to model fitting. However,

when the optimal lag order is unknown, the lag order is

often determined using exploratory tools such as autocor-

relation, partial autocorrelation, cross-correlation, and par-

tial cross-correlation plots (Chatfield, 2013; Turchin &

Taylor, 1992).2 Because these diagnostic methods originat-

ed primarily from the time series or econometric literature,

current software implementation of the autocorrelation,

partial autocorrelation, cross-correlation, and partial cross-

correlation functions is restricted for use with single-

subject time series, univariate or bivariate data, and often

assuming no missingness. When multiple endogenous var-

iables are present, selecting the optimal lag order for each

process and that for all the processes as a system can

quickly become a cumbersome variable selection problem:

not all processes would have the same p, and not all the

coefficients linked to the t – 1, t – 2, . . . , t – p lagged

responses of the same variable (termed autoregression co-

efficients) and of different variables have to be freed up

for reasons of parsimony.

To illustrate the utility of the partial autocorrelation and partial

cross-correlation functions in the scenario for which they were

originally intended (Turchin & Taylor, 1992), we first present

diagnostic plots of the partial autocorrelation with an

autoregressive model of order 1 [a VAR(1) model; termed

Illustration 1, which is based on Simulation 1 below], one per-

son, 100 time points, and complete data. In particular, the partial

autocorrelation function, which summarizes the correlations of a

variable with itself at various lags after the effects of lower-order

lags have been partialed out, correctly identifies the

autoregressive lag of 1 with no Type I errors (Fig. 1). In our

second illustration (i.e., Illustration 2), we present diagnostic

results from brief simulation based on a bivariate model of order

14 [a VAR(14) model], with simulated nonzero autoregression

coefficients at lags 1, 3, 4, 12, and 14 for one variable; nonzero

autoregression coefficients at lags 1 and 3 for the second variable;

and nonzero cross-regression coefficients at lags 8 and 12 for the

first variable on the second variable (see the empirical example

below for the motivation, as well as the multivariate case in our

Simulation 3 below). With simulated data from a single subject

over 170 time points and no missingness, the diagnostic results

based on the partial autocorrelation and partial cross-correlation

functions are shown in Fig. 2. In particular, the partial autocorre-

lation function estimated three of the seven nonzero

autoregressive lags as significant. However, it lacked power to

detect the remaining lags, whose coefficients were characterized

by smaller (absolute) magnitudes. The partial cross-correlation

function (see Wei, 2006, pp. 402–414), which serves to detect

correlations of a variable with another variable at prespecified

1
Using the analogy of distance traveled by a car, the rate of change corre-

sponds to the instantaneous speed of the car, the change in the rate of change

refers to the current acceleration or deceleration of the car, and so on.

2
For this article, the term Boptimal lag^ is defined as the lags that best predict

anticipated outcomes. This term is used when the lag structure in the popula-

tion is unknown (i.e., in normal empirical situations). The term Btrue lag order^

is the lag order in the population.

Behav Res



lags after the effects of lower-order lags have been partialed out,

correctly identified both nonzero cross-regressive lags (although

also two lags were incorrectly identified as significant). These

results suggest that although these methods might be underpow-

ered in low-effect-size scenarios, these tools performed adequate-

ly in identifying lags with higher strength in complete single-

subject time series (i.e., their intended function).

Next, we focused on scenarios that were explicitly be-

yond the intended purpose of these exploratory functions,

with the sort of data typically seen in the behavioral sci-

ences (Turchin & Taylor, 1992). Particularly, we focused on

the performance of these methods in estimating group-level

statistics from multiple subjects with missing data. In a

third simulation based on the same simulation model in

Illustration 2, we tested the utility of these exploratory func-

tions for situations that are typical of daily-diary data in the

behavioral sciences (Roche, Jacobson, & Pincus, 2016), in

which there were a large number of subjects and short time

series. We retained complete data in this simulation to show

that even without missing data (which is quite uncommon

Fig. 1 This plot depicts the partial autocorrelation function results with

single-subject data, 100 time points, and complete data. The solid black

line represents the partial autocorrelation function estimates; the dashed

black lines represent the critical values [based on�2=
ffiffiffiffiffiffiffiffiffiffiffiffi

T−1ð Þ
p

, where T

= the number of time points, 100 in this case]. In this plot, the lag of 1 is

correctly identified as being significantly different from 0. In addition,

there are no Type I errors (a.k.a. false positives). This is the scenario for

which the partial autocorrelation function was designed.

Fig. 2 These plots depict the partial autocorrelation and partial cross-

correlation function results with single-subject data, 170 time points,

and complete data. The solid black lines represent the partial autocorre-

lation function estimates; the dashed black lines represent the critical

values [based on �2=
ffiffiffiffiffiffiffiffiffiffiffiffi

T−1ð Þ
p

, where T = the number of time points,

170 in this case]. This figure depicts from left to right, top to bottom: (top

left) the partial autocorrelation function results of y1 on itself (lags 1 and

12 are correctly identified as significant, but lags 3, 4, and 14 are not

identified due to their low magnitude, and lag 7 is incorrectly identified

as significant); (top right) the partial autocorrelation function results of y2
on itself (lag 1 is correctly identified as significant, but lag 3 is not iden-

tified as significant, and lag 15 is incorrectly identified as significant);

(bottom left) the partial cross-correlation function results of y1 on y2 (lags

8 and 12 are correctly identified as significant, and lag 11 is incorrectly

identified as significant); and (bottom right) the partial cross-correlation

function results of y2 on y1 (where lag 6 is incorrectly identified as

significant). This is the scenario for which the partial autocorrelation

function and partial cross-correlation function were designed.
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in ILD within the behavioral sciences), the partial autocor-

relation and partial cross-correlation functions were not ad-

equate for such designs. With 159 subjects, 14 time points,

and complete data (i.e., Illustration 3), the results were sub-

stantially worse than for the single-subject simulation (see

Fig. 3). In particular, no lags were identified as significant,

and there were no clearly recognizable patterns even when

collapsing across the 159 different partial autocorrelation

and partial cross-correlation estimates. This showed that

the partial autocorrelation and partial cross-correlation

functions did not perform adequately in multiple-subject

data with short time series.

Fourth, we demonstrated that the partial autocorrelation and

partial cross-correlation functions performed poorly with single-

time-series data when there were missing data (i.e., Illustration

4). In simulating single-subject datawith 72%of the datamissing

(which was the level of missing data in the empirical example),

the model incorrectly identified 24 lags as significant (i.e., 24

Type I errors) and failed to identify seven of nine nonzero lags

as significant in the correct direction (see Fig. 4). Further details

of these demonstrations are provided later, in the context of a

simulation study (see Simulation 3). For now, they serve to high-

light the inadequacies of current exploratorymethods in correctly

identifying potential lags in multiple-subject time-series data of

finite lengths and with missing data—namely, the kind of ILD

that are typically available in psychology and other behavioral

sciences.

One alternative strategy is to simply ignore higher-order

lags due to convenience or due to theory, and simply to focus

on lower-order lags (most typically, just lags of 1). This strat-

egy assumes that the effects of higher-order lags are negligible

as compared to those of lower-order lags. In other words, there

are stronger associations among measurement occasions that

are more closely separated in time than among those that are

Fig. 3 These plots depict the partial cross-correlation function results

with multiple-subject data, 14 time points, and no missing data. The gray

lines in this figure depict the results of each of the individual cross-

correlation functions. The solid black lines represent the averages of the

individual cross-correlation function estimates, to obtain a group-level

autocorrelation function estimate. The dashed black lines represent the

critical values [based on �2=
ffiffiffiffiffiffiffiffiffiffiffiffi

T−1ð Þ
p

, where T = the number of time

points, 14]. This figure depicts, from left to right, top to bottom: (top left)

the partial autocorrelation function results of y1 on itself; (top right) the

partial autocorrelation function results of y2 on itself; (bottom left) the

partial cross-correlation function results of y1 on y2; and (bottom right)

the partial cross-correlation function results of y2 on y1. In all plots, no

lags are correctly identified as significant. This demonstrates that the

partial autocorrelation and partial cross-correlation function performs

quite poorly with multigroup data, because the formula for the 95%

confidence lines utilizes T from a single subject and does not pool

information across multiple subjects. Note that if N is added to the

critical value formula �2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T*N−1ð Þ
p

, most of the simulated nonzero

lags would still not be significant, and many spurious lags would be

identified.

Behav Res



farther apart—not an unreasonable assumption for many pro-

cesses in the social and behavioral sciences. However, as we

next illustrate, the impact of failing to incorporate higher-order

lags when they exist may not be as innocuous as is commonly

assumed. Consider the same VAR(14) model in our first illus-

tration, but now with 72% missing data (see Simulation 3). If

one simply ignores all higher-order lags beyond lag 1 and

proceeds with estimating a VAR(1) model, inaccurate point

estimates would result. In particular, when ignoring higher-

order lags, the 95% confidence intervals for the autoregression

coefficient of lag 1 for y1 did not include the simulated popu-

lation value. Moreover, the cross-regressive lag of y2 on y1 at

lag 1 was identified as significant. In contrast, when the data

were fitted with a correctly specified lag structure, the point

estimates were all extremely close to their simulated values

(see the results of Simulation Study 3 below for greater detail).

Thus, in addition to obtaining an incomplete test of one’s

theories, ignoring higher-order lags can lead to misleading

inferential results.

The present article describes a convenient, user-accessible

exploratory and confirmatory tool to find the optimal lag struc-

ture in VAR(p) models (Browne & Nesselroade, 2005;

Nesselroade, McArdle, Aggen, & Meyers, 2001). In particular,

the present procedure allows users to first narrow the search

space estimated in VAR(p) models by using variable selection

methods grounded within the penalized additive modeling

framework (Wood, 2003, 2006). Within the penalized additive

modeling framework, each of the potential lags in the search

space is translated into a large number of independent variables

or manifest predictors (e.g., Illustration 3, with 2 predictors × 2

dependent variables × 14 lags considered would result in a total

of 56 manifest independent variables). Nevertheless, variable

selection methods in the penalized additive framework allow

one to reduce the search space by down-weighting negligible

(near-zero) lag coefficients to zero (similar to Gasparrini,

Armstrong, & Kenward, 2010). After determining the optimal

lag structure [including information on p in a VAR(p) model, in

conjunction with the auto- and cross-regression coefficients that

Fig. 4 These plots depict the partial cross-correlation function results

with single-subject data, 170 time points, and 72% of the data missing.

The solid black lines represent the partial cross-correlation function

estimates. The dashed black lines represent the critical values [based on

�2=
ffiffiffiffiffiffiffiffiffiffiffiffi

T−1ð Þ
p

, where T = the number of time points, 48]. This figure

depicts, from left to right, top to bottom: (top left) the partial

autocorrelation function results of y1 on itself; (top right) the partial

autocorrelation function results of y2 on itself; (bottom left) the

partial cross-correlation function results of y1 on y2; and (bottom right)

the partial cross-correlation function results of y2 on y1. In these plots,

only lag 1 for y1 on y1 and lag 3 for y2 on y2 are correctly identified as

significant. Of the other seven simulated nonzero lags, two were

identified as significant, but in the incorrect direction, and 24 Type I

errors are made. This demonstrates that the partial autocorrelation and

partial cross-correlation functions both perform quite poorly at the

single-subject level when there are missing data.
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are to be freely estimated vs. constrained to be zero], the results

from fitting the final selected VAR(p) model in a confirmatory

framework are returned. Ultimately, the primary utility of this

approach is to offer users a convenient way of exploring and

modeling optimal lag structures in a VAR(p) framework.

In addition to describing the novel combination of these two

methods for modeling frameworks in identifying and modeling

the optimal lag structure, the present article provides an empirical

illustration and simulation studies demonstrating the utility,

strengths, and limitations of these techniques.

Differential Time-Varying Effect Model
(DTVEM)

DTVEM is a set of integrated subroutines for diagnosing the

optimal lag identification in equally spaced ILD for single or

multiple subjects.3 In particular, DTVEM combined some of

the flexible smoothing and estimation routines for fitting gen-

eralized additive mixed models (GAMMs, available as part of

the R package mgcv; Wood, 2006) and the state-space estima-

tion routines available in the R package OpenMx (Chow, Ho,

Hamaker, & Dolan, 2010; Harvey, 2001; Neale et al., 2016) to

explore, diagnose, and fit group-based VAR models of un-

known lag structures. That is, we assumed that the underlying

model of interest was a group-based VAR model with the

same lag structure across all individuals, but this optimal lag

structure was unknown and had to be detected using multivar-

iate, replicated time series from multiple subjects.

The exploratory stage usingGAMMwas useful in narrowing

down the search space, as lags that had substantial effects on

outcome variable(s) were weighted heavily, and lags that had

negligible effects on outcome variable(s) were down-weighted.

In Bsmoothing over^ the effects of successive lags, this ap-

proach provides a parsimonious but flexible way to explore

relationships among multiple variables while considering possi-

ble lagged associations among them. Using GAMM to narrow

down the search space prior to confirmatory model estimation

can be important, as large numbers of lags can be computation-

ally inefficient, and interdependencies from concurrent and

lagged associations can sometimes interfere with confirmatory

estimation (e.g. Bottan & Perez Truglia, 2011; Buckner, Crosby,

Wonderlich, & Schmidt, 2012; Buysse et al., 2007; Carels et al.,

2004; Starr & Davila, 2012). Following this exploratory stage

with a confirmatory stage within the state-space framework sub-

sequently allows one to estimate the identified lags with greater

precision than at the exploratory stage. The integrated routines

cycle iteratively among exploratory lag detection and confirma-

tory model fitting and output maximum-likelihood estimates

from the Bfinal^ model in the final iteration. These automated

routines were labeled using the DTVEM function shown in the

Appendix. Because they utilized subroutines developed for both

the GAMM and state-space frameworks, we describe each of

these in turn.

Narrowing down the search space
with the generalized additive mixed effects model
(GAMM)

To narrow down the search space for the confirmatory stage,

DTVEM offers users the choice to first explore the lag struc-

ture in the GAMM framework prior to proceeding to the con-

firmatory stage. The general GAMM framework, which ex-

tends the generalized linear model (McCullagh & Nelder,

1989) and generalized additive model (Hastie & Tibshirani,

1993; James, 2002), postulates that person i’s any one partic-

ular response variable, yi (where i = 1, . . . , n; n indexes the

total number of subjects), may be distributed as any of the

members from the exponential family (e.g., normal, Poisson,

gamma, multinomial, etc.; for further examples, see chap. 13

of Cohen, Cohen,West, & Aiken, 2003). The mean of yi, μi ≡

E(yi), is linked to a semiparametric predictor, ηi, expressed as

ηi ¼ X iβþ ∑
K

k¼1

f 1;k x1;k;i
� �

þ ∑
O

o¼1

∑
C

c¼1

f 2;c;o x2;o;i
� �

x
2
0
;c;i

þ ∑
Q

q¼1

∑
S

s¼1

f 3;s;q x3;q;i; x30 ;s;i

� �

þ Z ibi ð2Þ

via ηi = g(μi),where g is a link function that maps the mean of yi
to ηi , and g−1(ηi) is the reverse transformation that converts

ηi into μi. The first and last terms constitute the usual parametric

components in standard linear mixed effects models; and the

second, third, and fourth terms are nonparametric components

(i.e., of unknown functional forms) wherein the effects of a

series of covariates on the mean of the transformed dependent

response variable are of unknown functional forms. Specifically,

Xi is a 1 × nβ design vector that contains person i’s fixed-effects

components; β is the corresponding nβ × 1 vector of fixed-

effects parameters; Zi is the 1 × nb random-effects design vector

for person i; and bi ~ N(0,ψb) is a vector of random effects,

assumed to be multivariate normally distributed with zero

means and positive-definite covariance matrix ψb. The terms

f1, k(.), f2, c, o(.), and f3, s, q(.) are nonparametric functions involv-

ing the covariates in different ways.4 The covariates that appear

3
These integrated routines have been compiled into a working R package that

can be downloaded via the following Web address: www.nicholasjacobson.

com/projects/dtvem.

4
GAMM provides a collection of procedures for approximating these func-

tions and the resultant curves using different smoothers. f1, k(.) − f3, s, q-

are typically referred to as smooth functions, and the curves or lines produced

by these functions are denoted as smooths (Hastie & Tibshirani, 1990;

McKeown& Sneddon, 2014). Note that because the number of basis functions

used with each covariate can generally be different, the nonparametric part

cannot be written in matrix form because the dimensions of the basis coeffi-

cient vectors and basis function vectors generally differ between covariates.
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in each smooth function may be different, and we thus use

different indices and subscripts to distinguish the covariates that

appear in the three sets of smooth functions.

The term f1,k(.) is the smooth function of the kth covariate,

x1, k, i (k = 1, . . . , K). For instance, if yi represents depression

for person i and x1, k, i represents the anxiety of person i, f1,k (.)

then captures the unknown association between depression

and anxiety across all the individuals in the sample. This is

specified as s(x1, k) in the model specification portion of the

gamm function. Because a nonparametric function is used, the

resultant smooth (approximation curve) may be linear or non-

linear. The third term allows the smooth function for the oth

covariate, f2,c,o(x2, o, i),c = 1, . . . , C; o = 1, . . . , O), to depend

on, or interact with another (unsmoothed) covariate x
2
0
;c;i

(Ahmad, Leelahanon, & Li, 2005; Hastie & Tibshirani,

1993). In GAMM, the unsmoothed covariate is specified in

the model specification line using the Bby^ keyword to specify

a varying-coefficient model (Ahmad et al., 2005; Chow, Zu,

Shifren, & Zhang, 2011; Hastie & Tibshirani, 1993; Shiyko,

Lanza, Tan, Li, & Shiffman, 2012), in which the effect of the

cth covariate is assumed to vary nonparametrically but

smoothly over another covariate such as time or geographical

regions. Finally, the term f3,s,q (s = 1, . . . , S; q = 1, . . . ,Q) is a

tensor product used to approximate the unknown but possibly

jointly nonlinear effects of a pair of covariates on ηi.

Typically, when researchers fit VAR-type models in a regres-

sion framework, one approach is to create p new lagged vari-

ables for the intended lag order. So for four lags, four new

variables will have to be included in the data set and model

(e.g., Chow, Haltigan, & Messinger, 2010). However, this re-

quires a priori decision on p, the maximum order in the VAR(p)

process. Specifying an arbitrarily large value for p, in contrast,

would lead to a large number of independent variables and

correspondingly, missingness in these independent variables.

Using GAMM for this exploratory stage, we estimate one lag

variable that contains all possible lags; differences across lags

are only distinguished by means of a covariate, time differences

(i.e. ∆t). Thus, at this exploratory stage, we fit lags using the

varying-coefficient model in GAMM [using the third term,

f2,c,o(x2, o, i), c= 1, . . . , C; o = 1, . . . , O], and thereby estimate

the linear association between lagged variables and the outcome

as a smooth function of nonlinear time differences.

See Fig. 5 for an illustration of this exploratory stage when

used to detect significant lagged associations using simulated

data from a model with nonzero lags of 8 and 12 (see the

multivariate example for greater details). These lags are evi-

dent as peaks and valleys whose 95% confidence intervals did

not include zero at time differences of 8 and 12.5 These plots

also highlight one property or limitation of using the explor-

atory stage of DTVEM alone. That is, in VAR processes—the

kind of group-based process modeled in DTVEM at the mo-

ment—the effects of earlier lags would still linger at later lags

unless the effects of the earlier lags have been partialed out.

This Blimitation^ is similar in nature to the inadequacy of

diagnosing lag structures in AR processes using auto- as op-

posed to partial autocorrelation functions. Thus, results from

the exploratory step cannot be interpreted alone, but rather

lags identified in the exploratory stage are passed on to the

confirmatory state-space framework.

Social and behavioral scientists are often interested in the

simultaneous estimation of outcomes within a single model to

investigate lead-lag relationships among multiple dependent

variables. In this case, Eq. 2 can be extended to involve M

dependent variables, using the dummy variable indicator ap-

proach by MacCallum, Kim, Malarkey, and Kiecolt-Glaser

(1997).

Because the linear state-space model is parametric in na-

ture, nonparametric (possible nonlinear) time trends identified

5
Note that local peaks are determined by examining the neighboring values

and determining whether the coefficient of interest is greater than these values,

and if the coefficient is also significantly greater than 0. Each local valley is the

inverse of a local peak.

Fig. 5 These figures present the output from the exploratory stage of

DTVEM. In the first figure, the solid black line represents the predicted

values, and the dashed lines represent the corresponding 95% confidence

intervals. The data-generating model was simulated to have nonzero lags

of 8 and 12. The label f2, l, 1(∆t1i, l)y1, lag, i, l depicts the smoothed weight of

y1, lag, i, l on yi, l at every possible value of ∆t1i, l.
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in this exploratory stage are first removed (yielding group-

detrended data) before proceeding to the confirmatory model.

In sum, estimating the associations between the predictor

and the outcome across a smooth of non-linear time differ-

ences help one to detect optimal lag structures. Moreover, this

smoothing procedure helps to retain only the important lags

for the confirmatory stage.

Confirmatory stage: Verification of lag structure via
a confirmatory VAR(p) model

The primary utility of DTVEM is estimating confirmatory

VAR(p) models (see Eq. 1). As an example, consider a

VAR(3) with two dependent variables, which would be

expressed as

y1;i;t
y2;i;t

� �

¼ A1

y1;i;t−1
y2;i;t−1

� �

þA2

y1;i;t−2
y2;i;t−2

� �

þA3

y1;i;t−3
y2;i;t−3

� �

þεi;t ð3Þ

where y1, i, t and y2, i, t represent the vector of observed depen-

dent variables measured on occasion t. The matrices A1, A2,

and A3 are each 2 × 2 matrices in this particular example, with

the diagonal entries corresponding to autoregression coeffi-

cients for the two dependent variables at lags 1, 2, and 3,

respectively, whereas the off-diagonal entries represent the

cross-regression coefficients at those lags.

If the user opts to use the exploratory stage, not all of these

auto- and cross-regression coefficients illustrated in Eq. 3

would need to be freed up and estimated all at once. Rather,

subsets of these coefficients, as identified to be significant

within the exploratory stage, are freed up and estimated.

Alternatively, the user can opt to estimate all auto- and

cross-regressions if they so desire. Our particular confirmatory

approach of specifying a VAR(p) process with known lag

structure as a state-space model and obtaining the associated

maximum-likelihood parameter estimates by optimizing the

so-called Bprediction error decomposition function^ is known

to yield satisfactory point and standard error estimates when

the correctly specified model is fitted (Chow, Ho, et al., 2010;

Harvey, 2001).

Additional exploratory and confirmatory iterations

Following the confirmatory stage, the user is given the

choice to repeat additional exploratory stages to ensure

that all potentially statistically significant lags are identi-

fied while controlling for the effects that were significant

in the confirmatory stage. If the user opts for additional

exploratory stages, the varying-coefficients from the first

exploratory iteration are nearly identical. However, lagged

responses at particular lags found to yield statistically sig-

nificant coefficients at the confirmatory stage were includ-

ed as additional columns in Xi in Eq. 2 and removed from

the list of predictors with varying coefficients, f2, c, o(.) in

Eq. 2. This additional exploratory stage essentially partials

out the effects from those particular lags before other lags

are evaluated again. Any newly identified lags are then

iteratively re-estimated with the confirmatory stage. If this

is elected by the user, this process is repeated iteratively

until no new peaks or valleys are identified. At the end of

the DTVEM function, DTVEM outputs the last confirma-

tory state-space estimates.

All the stages of the DTVEM models are fully auto-

mated in the R function illustrated in the Appendix. In

practice, a variety of spline functions or penalized spline

functions may be used to obtain the smooths [i.e., all

terms involving f(.)] in these equations. In DTVEM, we

use the thin-plate regression splines, which are a gener-

alization of natural cubic splines (Bookstein, 1989),

meaning that smooth curves are constructed from a se-

ries of higher-order polynomials with specific con-

straints that these functions must be smooth (Wood,

2003). Thin-plate regression splines use an eigenvalue

decomposition to pick the basis coefficients that can

explain the greatest variance. Thin-plate regression

splines have the advantages of (1) not requiring a re-

searcher to choose knot locations, thereby reducing sub-

jectivity in modeling and otherwise having optimal ba-

ses (Wood, 2006) and (2) better accommodating a high

number of predictors than other spline regression

methods.

In summary, DTVEM was built to allow users to

easily explore lags while reducing the search space by

utilizing varying-coefficient models in GAMM and next

using confirmatory state-space models to estimate opti-

mal lag structures in the VAR framework.

Empirical example

The following example demonstrates the utility of DTVEM

using an empirical problem involving the time course of anx-

ious symptoms in daily life. Anxious moods are often thought

to constitute the co-occurrence of several symptoms, includ-

ing both feelings and physiological activation (Lang,

McTeague, & Bradley, 2016). Recent movements have been

particularly focused on the examination of these symptoms

within one integrated framework (Cuthbert & Insel, 2013).

In contrast to theories about anxiety and physiological ac-

tivation being concomitant with one another, there is consid-

erable evidence that physiological measurements and self-

reported anxious moods often have low associations when

measured concurrently (Hodges, 2015; Mauss, Wilhelm, &

Gross, 2004; Morris & Liebert, 1970). Rather than

representing a single unitary construct, recent theories suggest

that anxiety may be apprehended throughmultiple subsystems
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(e.g., somatic arousal, anticipation of physiological arousal,

and the avoidance of arousal are all considered integrated

subsystems) that are connected to one another over different

timescales (Epskamp et al., 2018; Frank, Jacobson, Hurley, &

McKay, 2017). Although quite recent, such theories of a tem-

poral relationship between physiology and subjective anxiety

build on classical conceptualizations that physiological re-

sponses and the perception of emotion precede and predict

one another over hours in a day (Cannon, 1927; Lange &

James, 1922). Importantly, the interaction between physiology

and feelings of anxiety are thought to inform the manifestation

and maintenance of anxiety disorders (Frank et al., 2017).

Consequentially, this relationship is crucial to the study of

the nature of psychopathology within daily life.

In line with such theories, there is evidence that cognitive

anxiety processes and negative emotions are associated with

physiological activation later in the day and during the subse-

quent night (Brosschot & Thayer, 2003; Brosschot, Van Dijk,

& Thayer, 2007). There also has been a suggestion that this

may be due to the effects of anxiety on the neuroendocrine

system, which can lead to prolonged heart rate over the span

of hours (Mergler & Valcciukas, 1998). Nevertheless, the op-

timal time in which the perception of anxiety and physiolog-

ical activation predict one another remains unknown

(Epskamp et al., 2018).

To date, no researcher has examined lead–lag rela-

tionships between perceptions of anxious moods and

physiological reactions over the course of hours

(Barrett, Quigley, Bliss-Moreau, & Aronson, 2004).

Studying the temporal course of anxious moods over

hours or even days in conjunction with lagged changes

in physiological responses, such as heart rate, could

hasten understanding of the phenomenology of anxious

moods and have implications regarding the intersection

of multiple units of analysis of pathological systems

(Cuthbert & Insel, 2013). For example, if self-reported

anxiety predicts later heart rate, treatment might focus

on cognitive or emotional-processing therapy to prevent

later increases in heart rate (Frank, Jacobson, Hurley, &

McKay, 2017). In contrast, if physiological activation is

a Bleading indicator^ of the perception of self-reported

anxiety, it may suggest that anxious moods may be due

to noticing changes in physiological responses

(Epskamp et al., 2018). In this case, treatment might

focus on relaxation techniques to directly target the

physiology.

The present empirical example was based on a set of

ecological momentary assessment data collected every

hour that subjects were awake. Most participants (N =

159) completed 68.5% of prompts. The Profile of Mood

States (POMS) Bnervous^ item was used on a 0–100

slider. Heart rate was measured with an open-source

application that used the camera on smartphones

(We t h e r e l l , 2 0 1 3 ) . T h e a p p l i c a t i o n u s e d

photoplethysmographic signals that were obtained by

taking pictures of the color changes in the index finger

when the finger was pressed against the phone’s camera.

The application ran for 30 s, and average heart rate was

measured during this time. This method of obtaining

heart rate through smartphone applications has been val-

idated (Scully et al., 2012) and had high convergence

with traditional measures (r =.98–1.00 with heart rate;

Bolkhovsky, Scully, & Chon, 2012). For this illustrative

data, the lack of a priori knowledge about the time

lagged associations in the data motivated our use of

DTVEM.

Since participants were prompted once per hour, the data

were broken down into hourly segments for the analyses. A

total of 7,509 data points were collected, out of a possible

26,880 (if prompts had occurred evenly and each person had

a complete sampling of every period). Thus, on the basis of

the sampling period of interest, the data were 28% complete.

Because there was a theorized bidirectional relationship be-

tween nervousness and heart rate in the literature, a bivariate

model was considered.

Note that the exploratory stage of DTVEMwas fitted using

the following equation:

η*i;l ¼ f 1;1 t*i;l

� �

þ f 2;l;1 ∆t1i;l
� �

NRonNR*
i;l

þ f 3;l;1 ∆t1i;l
� �

NRonHR*
i;l þ f 3;l;1 ∆t1i;l

� �

HRonNR*
i;l

þ f 4;l;1 ∆t1i;l
� �

HRonHR*
i;l

NRonNR represents the autoregressive effect of nervous-

ness, NRonHR represents the cross-regressive effect of ner-

vousness on heart rate, HRonNR represents the cross-

regressive effects of heart rate on nervousness, and HRonHR

represents the autoregressive effects of heart rate. Among the

results available from the exploratory stage were nonparamet-

ric time trends at the group level, shown in Fig. 6. In regard to

the time trends, nervousness showed significant time trends,

that were highest at the first hours in the study and peaked

Fig. 6 These figures depict the time trends of nervousness and heart rate

over time for the population.
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again approximately 60 h later. Interestingly, heart rate began

to decrease at this time. Notably, participants arrived for a

compliance check at approximately this time, and this system-

ic increase in nervousness may coincide with the evaluation of

their compliance.

The exploratory stage showed significant AR effects of

nervousness and heart rate, such that the strongest effects of

nervousness on nervousness occurred one to four hours later

and peaked again 14 h later. The exploratory stage of DTVEM

showed that the strongest AR effects of heart rate on itself

occurred 1–3 h later. With regard to cross-regressive trends,

the exploratory stage of DTVEM suggested that nervousness

may positively predict heart rate 7 and 8 h later and negatively

predict heart rate 12 h later. The exploratory stage of DTVEM

suggested that heart rate might positively predict nervousness

15, 16, and 17 h later. See Fig. 7 for a summary of the

exploratory-stage varying coefficients.

Following the optional exploratory stage, time trends

were modeled by focusing solely on nervousness and

heart rate time smooths. The residuals of this model

were then passed on to the state-space confirmatory

stage of DTVEM.

The final state-space confirmatory results indicated that

nervousness predicted itself 1 h later (α1, 1 = 0.275, SEα1;1
=

0.012, pα1;1
< .001), 3 h later (α1, 3 = 0.071, SEα1;3

= 0.014,

pα1;3
< .001), 4 h later (α1, 4 = 0.075, SEα1;4

= 0.014, pα1;4
<

.001), 12 h later (α1, 12 = 0.077, SEα1;12
= 0.020, pα1;12

< .001),

and 14 h later (α1, 14 = 0.082, SEα1;14
= 0.019, pα1;14

< .001).

The many significant AR terms associated with nervousness

may suggest that the dynamics of nervousness are complex

and conform the multiple time scales. These significant AR

terms may also reflect person-specific time scales and individ-

ual differences, which were not modeled. In contrast, heart

rate significantly predicted itself 1 h (α2, 1 = 0.144, SEα2;1
¼

0.015, pα2;1
< .001) and 3 h (α2, 3 = 0.037, SEα2;3

= 0.016, pα2;3

= .020) later. The cross-regressive relationships suggested that

nervousness significantly predicted heart rate 8 h later (γ1, 2, 8
= 0.055, SEγ1;2;8

= 0.020, pγ1;2;8 = .007). Interestingly, nervous-

ness significantly negatively predicted heart rate 12 h later (γ1,

2, 12 = – 0.052, SEγ1;2;12 = 0.024, pγ1;2;12 = .030). Next, we

compared the magnitude of the effect of nervousness on heart

rate 8 h later compared to the effect of 12 h later by removing

the lagged effects alone and examining the differences inmod-

el fit by means of a likelihood ratio test. The change in model

fit (– 2*log likelihood) was greater when the cross-regressive

coefficient of 8 h was removed (– 2 LL = 7.29 with 1 df),

compared to that observed when the coefficient for 12 h later

was removed (– 2LL = 4.68 with 1 df). These results indicate

Fig. 7 The results depict the exploratory stage of DTVEM for

nervousness and heart rate, predicting themselves and each other. The

solid lines depict the autoregressive and cross-regressive coefficients

over all possible time differences. The dashed lines depict the

confidence bands of the regression coefficients.
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that the effect of nervousness on heart rate was stronger 8 h

later than 12 h later. Notably, the model was tested for station-

arity, and was stationary (based on all the values of the mod-

ulus of the roots of the determinant of the identity matrix

minus the transition matrix being greater than one).

In sum, we did not find a bidirectional relationship between

nervousness and heart rate, but rather, that nervousness unidi-

rectionally drove the degree of heart rate 8 and 12 h later. A

hormonal response may explain the significantly positive re-

lationship followed by a significantly negative relationship

between nervousness and later heart rate. Specifically, ner-

vousness predicts the release of norepinephrine, and norepi-

nephrine has a positive association with heart rate that quickly

dissipates over approximately the same number of hours

(Mergler & Valcciukas, 1998). This illustrates the utility of

DTVEM in providing a convenient automated framework to

estimate unknown lag structures.

Simulation study

A simulation study was performed to test the perfor-

mance of DTVEM at detecting optimal lag structures

in processes that unfold over diverse time scales. Our

goal was to consider sample size and design conditions

that mirrored empirical processes of varying complexity

(e.g., involving processes unfolding over a single vs.

multiple time scales, with univariate vs. multivariate da-

ta, and complete vs. missing data).

First, we chose one of the most common AR struc-

tures in the behavioral sciences, an AR model of order

1 with two sample size configurations: (1a) T = 100, N

= 1, a configuration commonly utilized in the time se-

ries literature to evaluate finite-sample performance of

statistical approaches; and (1b) T = 14, N = 100, as

commonly seen in many ILD studies in psychology

(Armstrong et al., 2010; Beidel, Neal, & Lederer,

1991; Roche et al., 2016; Steger & Frazier, 2005).

Second, we simulated a complex AR structure with

sharp shifts using a seasonal autoregressive integrated

moving average (SARIMA; with N = 100, T = 14)

(Box & Jenkins, 1976; Box et al., 2013; Brockwell &

Davis, 2002; Reinsel, 2003).

Third, we wanted to test a typical multivariate case (N =

159, T = 170) that mirrored the irregular measurement inter-

vals and complex lag structure and found in the empirical

example. Our goal was to evaluate the performance of the

DTVEM in recovering complex group-based, multivariate,

lag structure using multiple-subject data. This simulation

study served to extend the results from previous simulation

studies in which researchers compared inferential results ob-

tained from fitting discrete-time models to unequally spaced

assessments that were binned or blocked together at

prespecified windows (e.g., hourly, every 4 h) with

missingness inserted, in which appropriate, to create a set of

equally spaced data. These designs tend to be highly prevalent

in ILDs (Ebner-Priemer, Eid, Kleindienst, Stabenow, & Trull,

2009), and blocking irregularly spaced data at equally spaced

time windows with missingness inserted in which appropriate

is a relatively common way of handling irregular spacing in

ILDs (Silvia, Kwapil, Walsh, & Myin-Germeys, 2014).

Researchers (de Haan-Rietdijk, Voelkle, Keijsers, &

Hamaker, 2017) have found in a previous simulation study

that applying this method of data blocking to single-subject,

equally spaced time series blocked over successive windows

yielded inferential results that closely approximated those ob-

tained from continuous-time models in situations involving a

lag-1 structure. However, this method of blocking was not as

successful in approximating continuous-time models in other

scenarios involving continuous-time models that capture

higher-order changes (and hence higher-order lag structure

in their discrete-time counterparts), particularly when the time

intervals used to define successive lags are large relative to

those used in data generation (de Haan-Rietdijk et al., 2017).

In other words, de Haan-Rietdijk et al. considered scenarios in

which the time intervals used in data generation might be

different from those used to define the lags (e.g., measurement

occasions that were separated by an interval of ∆t = 2, as

opposed to those separated by ∆t =1, were specified as one

lag apart). Here we generated data using discrete-time models

in which ∆t was set to 1.0 both in the data generation and

model-fitting process. Our goal is to determine, under situa-

tions with correctly specified ∆t, the performance of the

DTVEM when applied to multisubject data with an unknown

lag structure, a large amount of missing data (72%), and small

signal-to-noise ratios.6

We conducted 500 Monte Carlo (MC) simulations for each

of the three primary modeling variations considered. These

variations include (1a) an AR(1) model with N = 100, T =

14; (1b) an AR(1) model with n = 1, T = 100; (2) a

SARIMA model with N = 100, T = 14; and (3) a multivariate

case with N = 159, T = 170, and 72% missing data. The ratio

between the simulated values and the total variance (i.e., the

signal-to-noise ratio) ranged from 0.10 to 0.60 (the process

noise was set to 2.25 for all models). The DTVEM was ap-

plied without any a priori knowledge about the lag structure

and allowed to go through iterative cycles of the lag explora-

tion and confirmatory VAR(p) model-fitting stage until no

significant lags were identified in the additional exploratory

stages of DTVEM.

6
Note that signal-to-noise ratios were estimated empirically by simulatingN =

1 and t = 1,000,000, and estimating the proportion of variation explained by

including the true lags (R2), then calculated using the signal-to-noise ratio, R2/

(1 – R2) (Cohen, 1988; Kelley, 2007; Muirhead, 1985).
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Simulation 1: AR(1) simulation

The first simulation was based on an AR process of order 1

[i.e., AR(1) process] with univariate equidistant time points

and complete cases. Time series data were generated using

one of two possible sample size configurations: (Simulation

1a) N = 100 persons over T = 14 time points, and (Simulation

1b) n = 1 person over T = 100 time points, using the simula-

tion model:

yi;t ¼ :5* yi;t−1
� �

þ εi;t

In this formula, y is the outcome variable for person i at

time t, εi, t represents the process noise for person i and time t,

assumed to be normally distributed. The process noise was set

to be 2.25, and, as such, the signal-to-noise ratio was 0.34.

Simulation 2: Seasonal autoregressive integrated
moving average [SARIMA(1,0,0) × (1,0,0)7] simulation

Next, we tested DTVEM using a process that unfolds over

multiple time scales by pairing an AR model with a seasonal

component (i.e. SARIMA, e.g., a day-to-day process embedded

in a weekly cycle; hour-by-hour fluctuations with diurnal

rhythms embedded) (Box & Jenkins, 1976; Brockwell &

Davis, 2002; Reinsel, 2003). In this case, we included a sea-

sonal component with a period of 7, formulated such that the

current cycle was affected by the immediately preceding cycle.

That is, there was an AR(1) component for this seasonal com-

ponent, such that the current level of the process was affected

by the level of the process seven lags ago. Beyond this seasonal

component, the process was hypothesized to also show lag-1

AR dynamics, yielding a SARIMA(1,0,0) × (1,0,0)7 model.

Our specific choice of AR weights for the seasonal and non-

seasonal components yielded the following combined model:

yi;t ¼ :5* yi;t−1
� �

þ :4* yi;t−7
� �

−:2* yi;t−8
� �

þ εi;t

In this formula, y is the outcome variable for person i at time

t, and εi, t represents the process noise for person i and time t,

assumed to be normally distributed. Note that the SARIMA has

complex AR dynamics, as the process has a significantly pos-

itive lag at 7 and has a significantly negative lag one lag later.7

The signal-to-noise ratio for this model was 0.60.

Simulation 3: Multivariate time series simulation
with 72% missingness

Thus far, all simulations of DTVEM have been univar-

iate with no missingness. As such, we wanted to test

the validity of DTVEM with multivariate data that more

closely resembled typical-use scenarios with ILD.

Inspired by the empirical example, we created a simu-

lation condition using the same number of persons, with

the same pattern of missingness, and the same lag struc-

ture to generate a more realistic scenario. Thus, the

multivariate simulations were generated through two

simulation equations:

y1;i;t ¼ :3* y1;i;t−1
� �

þ :1* y1;i;t−3
� �

þ :1* y1;i;t−4
� �

þ :1* y1;i;t−12
� �

þ :1* y1;i;t−14
� �

þ εy1;i;t

y2;i;t ¼ :1* y2;i;t−1
� �

þ :1* y2;i;t−3
� �

þ :2* y1;i;t−8
� �

−:2* y1;i;t−12
� �

þ εy2;i;t

In this formula, two time series were simulated together. In

these cases, y1 and y2 represented the two time-series out-

comes for person i at time t, and εy1;i;t and εy2;i;t represented

the process noise for person i and time t for y1 and y2, respec-

tively, which was assumed to be normally distributed with

zero means. The process noise variances for both time series

were set to 2.25, as in the other models. Note that there were

five separate autoregressive lags for y1, at 1, 3, 4, 12, and 14,

and two autoregressive lags for y2, at 1 and 3. Additionally, the

outcome variable y2 was also influenced by y1 at lags of 8 and

12. Thus, we increased the size of the lag coefficients to in-

crease the signal to noise ratio within the data (between abso-

lute value strengths of 0.1 to 0.3). Nevertheless, the signal-to-

noise ratios were still quite small, at 0.23 for y1 and 0.10 for y2.

Model evaluation

All DTVEM estimates were examined through the following

metrics: (1) the number of auto- and cross-regressive param-

eters estimated, (2) the mean estimated values across simula-

tions (i.e., the mean θ̂ values); (3) the root mean square error

(RMSE), which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H
∑H

h¼1 θ̂h−θ
� �

r

2; (4) bias, which is de-

fined by 1
H
∑H

h¼1 θ̂h−θ
� �

; (5) the mean SE across MC runs, as

compared to the standard deviation of the estimates acrossMC

runs; (6) the mean relative deviance of the SE (RDSE), which

is defined by Mean SE−SD of θ̂ across MC runs

SD of θ̂ across MC runs
; (7) coverage, which

is the proportion of 95% confidence intervals whose values

include the simulated θ across MC simulations; (8) power,

defined as the proportion of parameter estimates for truly non-

zero population parameters from the confirmatory stage across

the MC runs whose 95% confidence intervals do not contain

zero; (9) the average Type I error rate, which is defined as the

proportion of MC replications for which the 95% confidence

intervals incorrectly identified any one spurious lag as

7
Specifically, to understand the full dynamics of multiplicative SARIMA

models such as the SARIMA(1,0,0) × (1,0,0)7 model considered here, one

can first express the model using the lag operator and expand the lag polyno-

mials as follows. Specifically, let L denote the lag operator, such that L(xt) = xt–

1 and L
p(xt) = xt–p. The SARIMA(1,0,0) × (1,0,0)7 model considered here can

be expressed using the lag operator as (Box & Jenkins, 1976; Brockwell &

Davis, 2002; Hamilton, 1994; Reinsel, 2003):

1−α17L
7

� �

1−α11Lð Þyi;t ¼ ζy;i;t 1−α11L−α17L
7 þ α17α11L

8
� �

yi;t ¼
ζy;i;t yi;t ¼ α11yi;t−1 þ α17yi;t−7 þ α18yi;t−8 þ ζy;i;twhere we set α11=

0.5, α17= 0.4, and α18 = −α17α11= – 0.2.
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statistically significant, (as averaged over all possible spurious

lags considered); and (10) the total Type I error rate, which is

defined as the proportion of MC replications for which the

95% confidence intervals incorrectly detected one or more

spurious lags. Note that we considered a maximum lag of 10

for each simulation. We compared the final confirmatory es-

timates from DTVEM to a state-space model with lagged

structures that coincided with the data generation models.

That is, to provide a benchmark against which the DTVEM

estimates were compared, we obtained ML estimates under

the Bideal^ scenario that a priori knowledge concerning the

lag structures was already available—a scenario that is often

not fulfilled in practice. Estimation was performed using

OpenMx (Neale et al., 2016) through state-space specification

of a VAR(p) model and was subjected to the same evaluation

criteria as the DTVEM.

Results

Simulation 1: AR(1) results with no missingness

For AR(1) with one person with 100 time points and

100 persons with 14 time points, the results were

grouped together because they were very similar. The

exploratory stage passed on an average of three

autoregressive parameters to be estimated in the confir-

matory stage (see Table 1). A summary of the findings

is depicted in Table 2, and comparison results from

using confirmatory state-space models with correctly

specified lag structures are shown in Table 3. Power

estimates from the DTVEM suggested that the powers

for detecting the truly nonzero parameters as being sig-

nificantly different from zero were 99.8% and 100% for

the two sample size configurations considered (with N =

1, T = 100, and N = 100, T = 14, respectively), as

compared to 100% power for both simulation conditions

in the confirmatory models. Both DTVEM and the con-

firmatory models also showed 100% power to detect the

truly nonzero AR(1) parameter and process noise vari-

ance across both simulations. For the N = 1 and T =

100 condition, we considered up to lag 10 and found an

average Type I error rate of 1.6% and a total Type I

error rate of 11.8%. Likewise, for N = 100 and T = 14,

the average Type I error rate was 1.6%, and the total

Type I error rate was 8.6%. For both simulation condi-

tions, the biases and RMSEs of the point estimates were

very small and closely paralleled the biases and RMSEs

from the confirmatory models. For both conditions, the

standard error estimates also closely mirrored the Btrue^

or empirical standard errors, and coverage rates for all

time series parameters were close to the 95% nominal

level. The results of this condition suggest that the

combined DTVEM procedures led to excellent recovery

of the lag structure and corresponding estimates in the

absence of a priori knowledge concerning the lag struc-

ture. Unlike standard exploratory approaches such as

PACF plots, DTVEM worked for both single-subject

time series of moderate length as well as multiple-

subject replicated (but short) time series.

Simulation 2: SARIMA(1,0,0) × (1,0,0)7) results with 14
time points with no missingness

The DTVEM estimates and SE were similar to those from

previous AR(1) conditions. On the basis of variable selec-

tion in the exploratory stage, an average of four

autoregressive parameters were estimated at the confirma-

tory stage (see Table 1). The process noise variance esti-

mate for ζy, i, j was characterized by slight increases in

RMSE and bias, as compared to the AR(1) conditions,

reflecting the increased difficulties in estimating this pa-

rameter with more complex lag structures and limited time

series length. The power was slightly decreased for part of

the estimates as compared to prior models, with DTVEM

showing 100% power to detect the nonzero lag values of 1

and 7, and 98.4% power in detecting the lag of 8. The high

power across conditions is noteworthy, given the small val-

ue of the simulated lag-8 coefficient and the limited repli-

cations of data spanning eight lags apart. For the seven lags

considered (we considered up to lag 10, and thus lags 2–6,

9, and 10 were truly zero), the average Type I error rate was

1.2%, and the total Type I error rate was 8.6%. As with the

previous results, the estimates and standard errors were sat-

isfactory and closely mirrored those from the correctly

specified confirmatory state-space model (see Table 3).

Simulation 3: Multivariate time series results
with 72% missing data and a complex lag structure

The DTVEM point and SE estimates in this model showed

trends similar to those from the previous models (i.e.,

satisfactory point and SE estimates that closely mirrored

the correctly specified confirmatory model; see Tables 4

and 5). On the basis of variable selection at the exploratory

stage, an average of 27 auto- and cross-regressive param-

eters were estimated at the confirmatory stage (see Table

1). This means that 55% of the potential lags were elimi-

nated from the exploratory stage (relative to only 15% of

potential lags that were simulated to be nonzero in the

population). The coverage rates for all other parameters

were close to the .95 nominal level. Power and the Type

I error rate were similar to the values from prior models,

with DTVEM showing approximately 100% power to de-

tec t the lag-1, lag-3 , lag-4 , lag-12, and lag-14

autoregressive parameters of y1, as well as power in

Behav Res



detecting the lag-8 and lag-12 cross-regressive parameters

of y1 on y2 and the lag-1 autoregressive parameter of y1.

Nevertheless, the power to detect the lag-3 autoregressive

parameter for y2 was 61%, likely resulting from a very low

signal-to-noise ratio. Regarding the AR relationships with

y1 as an outcome, the average Type I error rate was 2.8%,

and the total Type I error rate was 10.0%. For the AR

relationships with y2 as an outcome, the average Type I

error rate was 2.1%, and the total Type I error rate was

8.3%. The average Type I error rate for the cross-

regressive relationship of y2 on y1 was 1.1%, and the total

Type I error rate was 8.3%. For y1 on y2, the average Type

I error rate was 3.1%, and the total Type I error rate was

15.4%. Overall, these results suggest a slight increase in

difficulty for DTVEM to simultaneously identify the cor-

rect lag structures when multiple constructs were involved

with a complex lag structure, and there was a large pro-

portion of missing data. Nevertheless, the high power for

detecting most of the truly nonzero lag coefficients, with

the relatively low average and total Type I error rates of

the DTVEM in such a challenging scenario, provide some

reassurance of the proposed approach’s utility in handling

complex lag structures in other similar empirical settings.

Summary of simulation results

The simulations suggest that DTVEM has high exploratory

power and low Type I error rates across both univariate and

bivariate models with no a priori information concerning the

lag structures. DTVEM’s point estimates were accurate across

the simulation conditions. The SE estimates were unbiased for

all conditions, either without missing data or with 72% of the

Table 2 Summary of DTVEM confirmatory-stage estimates for complete data

Simulation T Term Simulated θ Mean θ̂ RMSE Bias SD of θ̂ Mean of SE RDSE Coverage of 95% CI Power

AR(1), N = 1 100 AR(1) 0.500 0.449 0.051 – 0.051 0.092 0.090 – 0.031 0.906 0.998

AR(1), N = 1 100 ζy, i, j 2.250 2.152 0.098 – 0.098 0.315 0.305 – 0.033 0.882 1.000

AR(1), N = 100 14 AR(1) 0.500 0.499 0.001 – 0.001 0.024 0.024 0.015 0.964 1.000

AR(1), N = 100 14 ζy, i, j 2.250 2.265 0.015 0.015 0.091 0.086 – 0.060 0.938 1.000

SARIMA 14 AR(1) 0.500 0.510 0.010 0.010 0.025 0.025 – 0.021 0.918 1.000

SARIMA 14 AR(7) 0.400 0.393 0.007 – 0.007 0.039 0.037 – 0.039 0.936 1.000

SARIMA 14 AR(8) – 0.200 – 0.209 0.009 – 0.009 0.038 0.041 0.093 0.956 0.832

SARIMA 14 ζy, i, j 2.250 2.407 0.157 0.157 0.109 0.097 – 0.108 0.634 1.000

This is the summary of the DTVEM confirmatory stage estimates. Simulation refers to the way in which the data were simulated. T refers to the total

number of time points for each person. AR refers to whether the simulated model term of interest was autoregressive. The symbol ∆t refers to the time

difference in which the model was simulated. These results depict (1) simulated θ (the ways in which the data were simulated); (2) the mean θ̂ values; (3)

the root mean square error (RMSE), which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H
∑H

h¼1 θ̂h−θ
� �

r

2; (4) bias, which is defined by 1
H
∑H

h¼1 θ̂h−θ
� �

; (5) the standard deviation of the θ̂ across

Monte Carlo runs; (6) the mean standard error (SE) across Monte Carlo runs; (7) the mean relative deviance of the SE (RDSE), which is defined by
Mean SE−SD of θ̂

SD of θ̂
; and (8) power, defined as the proportion of parameter estimates from the confirmatory stage across the MC runs whose 95% confidence

intervals do not contain zero.

Table 1 Numbers of parameters estimated on the basis of variable selection at the DTVEM exploratory stage

Simulation T %M # of Nonzero

Regressive

Parameters

M Number of

Regressive Parameters

Estimated

SD # of Regressive

Parameters

Estimated

5th Quantile of Number of

Regressive Parameter

Estimates

95th Quantile of Number of

Regressive Parameter

Estimates

AR(1), N =

1

100 0 1 3.288 1.926 1 7

AR(1), N =

100

14 0 1 3.948 1.767 1 7

SARIMA 14 0 3 4.092 0.939 3 6

Multivariate 170 72 9 27.484 4.473 21 36

This table predicts the number of auto- and cross-regressive parameters estimated on the basis of significant lags extracted from the exploratory stage of

DTVEM. In all simulations, DTVEM extracted a larger number of parameters than non-zero parameters on average. Nevertheless, these simulations

demonstrated, the exploratory stage of DTVEM reduced the number of parameters estimated in confirmatory models substantially across every

simulation in every case.
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data missing. The computational time needed for the R

DVTEM program to manipulate and perform the analyses

was under 2 min for each of the present simulations, except

for the multivariate simulation, which took approximately 2 h

to run [note that this was primarily due to an expansion of the

Hessian matrix in the state-space models, in which the estima-

tion process for the number of subjects multiplied by the num-

ber of potential lags squared = (159*30)2 = 26,010,000].

Table 4 Summary of DTVEM confirmatory-stage estimates with missing data

Simulation T %M Term Simulated θ Mean θ̂ RMSE Bias SD of θ̂ Mean of SE RDSE Coverage of 95% CI Power

Multivariate 170 72 AR(1) 0.300 0.300 0.013 0.000 0.013 0.011 – 0.157 0.924 1.000

Multivariate 170 72 AR(3) 0.100 0.102 0.015 – 0.012 0.014 0.013 – 0.076 0.911 0.948

Multivariate 170 72 AR(4) 0.100 0.102 0.019 – 0.012 0.019 0.013 – 0.291 0.911 0.988

Multivariate 170 72 AR(12) 0.100 0.100 0.015 0.000 0.015 0.014 – 0.074 0.935 0.986

Multivariate 170 72 AR(14) 0.100 0.099 0.015 0.001 0.015 0.014 – 0.101 0.936 1.000

Multivariate 170 72 AR(1) 0.100 0.101 0.013 – 0.001 0.013 0.012 – 0.048 0.944 1.000

Multivariate 170 72 AR(3) 0.100 0.098 0.013 0.002 0.013 0.013 0.019 0.950 0.606

Multivariate 170 72 CR(8) 0.200 0.202 0.017 – 0.002 0.017 0.015 – 0.110 0.930 1.000

Multivariate 170 72 CR(12) – 0.200 – 0.201 0.018 0.001 0.018 0.015 – 0.142 0.950 1.000

Multivariate 170 72 ζy1 ;i; j 2.250 2.243 0.033 0.007 0.032 0.031 – 0.032 0.938 1.000

Multivariate 170 72 ζy2 ;i; j 2.250 2.247 0.037 0.003 0.038 0.035 – 0.080 0.960 1.000

This is the summary of the DTVEM estimates across each of the missing data simulations. All estimates presented in this table are from the DTVEM

confirmatory stage. Simulation refers to the way in which the data were simulated. T refers to the number of time points,%M refers to the percentage of

missing data which was missing at random and was different for each person, and AR/CR refers to whether the simulated model term of interest was

autoregressive (AR) or cross-regressive (CR). The symbol ∆t refers to the time difference in which the model was simulated. These results depict (1)

simulated θ (theways in which the data were simulated); (2) themean θ̂ values; (3) the root mean square error (RMSE), which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H
∑H

h¼1 θ̂h−θ
� �

r

2; (4)

bias, which is defined by 1
H
∑H

h¼1 θ̂h−θ
� �

; (5) the standard deviation of θ̂ across Monte Carlo runs; (6) the mean standard error (SE) across Monte Carlo

runs; (7) the mean relative deviance of the SE (RDSE), which is defined by
Mean SE−SD of θ̂

SD of θ̂
; and (8) power, defined as the proportion of parameter

estimates from the confirmatory stage across the MC runs whose 95% confidence intervals do not contain zero.

Table 3 Summary of confirmatory state-space estimates for complete data

Simulation T Term Simulated θ Mean θ̂ RMSE Bias SD of θ̂ Mean of SE RDSE Coverage of 95% CI Power

AR(1), N = 1 100 AR(1) 0.500 0.496 0.004 – 0.004 0.086 0.087 0.011 0.954 1.000

AR(1), N = 1 100 ζy, i, j 2.250 2.242 0.008 – 0.008 0.319 0.317 – 0.005 0.926 1.000

AR(1), N = 100 14 AR(1) 0.500 0.501 0.001 0.001 0.024 0.024 0.021 0.958 1.000

AR(1), N = 100 14 ζy, i, j 2.250 2.271 0.021 0.021 0.092 0.087 – 0.055 0.936 1.000

SARIMA 14 AR(1) 0.500 0.514 0.014 0.014 0.024 0.025 0.019 0.902 1.000

SARIMA 14 AR(7) 0.400 0.399 0.001 – 0.001 0.035 0.035 – 0.007 0.948 1.000

SARIMA 14 AR(8) – 0.200 – 0.210 0.010 – 0.010 0.037 0.040 0.078 0.956 1.000

SARIMA 14 ζy, i, j 2.250 2.389 0.139 0.139 0.098 0.097 – 0.011 0.712 1.000

This is the summary of the confirmatory state-space estimates across each of the simulations with complete data. Simulation refers to the way in which

the data were simulated. T refers to the total number of time points for each person. AR refers to whether the simulated model term of interest was

autoregressive. The symbol: ∆t refers to the time difference in which the model was simulated. These results depict (1) simulated θ (the ways in which the

data were simulated); (2) the mean θ̂ values, (3) the root mean square error (RMSE), which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H
∑H

h¼1 θ̂h−θ
� �

r

2; (4) bias, which is defined by 1
H

∑H
h¼1 θ̂h−θ

� �

; (5) the standard deviation of the θ̂ across Monte Carlo runs; (6) the mean standard error (SE) across Monte Carlo runs; (7) the mean

relative deviance of the SE (RDSE), which is defined by
Mean SE−SD of θ̂

SD of θ̂
; (8) coverage, which is the proportion of simulated values that fall within the 95%

confidence intervals across Monte Carlo simulations; and (9) power, defined as the proportion of parameter estimates across the MC runs whose 95%

confidence intervals do not contain zero.
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Discussion

This article has described a convenient user-accessible explor-

atory and confirmatory tool, DTVEM, which allows users to

model time lags in the state-space framework. Using a series

of simulation examples, we found that DTVEM had high

power in the detection of optimal lag structures, low Type I

error rates, accurate point estimates, and accurate SEs as long

as sufficient measurement occasions were available to recover

higher-order lags. The simulation results support the utility of

DTVEM as an exploratory tool over the partial autocorrelation

function with multisubject data. The simulation results are

particularly notable given the high dimensionality of the lags

considered. For example, the multivariate simulation across

15 lags with two dependent variables is analogous to 30 inde-

pendent predictors across each of the two outcomes (i.e., 60

potential regression estimates). Thus, DTVEM demonstrated

high performance across a diverse number of conditions with

high dimensionality, low signal to noise ratio, and high

missingness.

Within the behavioral sciences, DTVEM can be used to

answer a variety of research questions involving different

ILDs such as daily diary studies, ecological momentary as-

sessments, physiological, and neurological data collection.

Examples of research questions the DTVEM can facilitate

include: (1) Does one construct predict itself or another con-

struct at a later time? (this could be detected through auto- and

cross-regressive lags); (2) When does one construct

maximally predict other constructs? (this could be detected

through the consideration of many distinct lags beyond lag

1); and (3) Are oscillatory or other cyclic patterns present in

my data? Such patterns are typically manifested as oscillatory

patterns in the lag coefficients, such as significant positive lag

coefficients followed by significant negative lag coefficients,

or vice versa. Weekly cycles may be revealed through the

inspection of statistically significant coefficient at lag 7 with

daily data, whereas a yearly cycle can be capture as significant

lag-12 coefficient with monthly data. Taken together,

DTVEM has a substantially broad application and has consid-

erable utility for a number of research paradigms. For exam-

ple, DTVEMwould allow (1) psychopathology researchers to

uncover maintenance or short-term risk factors within psycho-

pathology (i.e., where within-person variation in one construct

is largely driven by within-person variation in another con-

struct), (2) personality and social psychology researchers to

explore dynamics in behavior across several time periods, or

(3) researchers to explore how and when developmental pro-

cesses occur (e.g., how and when does a mother’s behavior

influence a child’s behavior, and vice-versa).

The DTVEM comprises relatively well-known (specifical-

ly, GAMM and state-space estimation) subroutines and, as

such, may not be seen as a novel tool. However, DTVEM

and the results highlighted in this article make several novel

contributions to the field. First, DTVEM can be seen as a

utility function that features novel integration and application

of some of the key strengths of the GAMM and state-space

Table 5 Summary of confirmatory state-space estimates with missing data

Simulation T %M Term Simulated θ Mean θ̂ RMSE Bias SD of θ̂ Mean of SE RDSE Coverage of 95% CI Power

Multivariate 170 72 AR(1) 0.300 0.299 0.011 0.001 0.011 0.011 0.015 0.952 1.000

Multivariate 170 72 AR(3) 0.100 0.100 0.013 0.000 0.013 0.013 – 0.013 0.950 1.000

Multivariate 170 72 AR(4) 0.100 0.101 0.014 – 0.001 0.014 0.013 – 0.032 0.950 1.000

Multivariate 170 72 AR(12) 0.100 0.100 0.014 0.000 0.014 0.013 – 0.028 0.948 1.000

Multivariate 170 72 AR(14) 0.100 0.100 0.014 0.000 0.014 0.014 – 0.013 0.952 1.000

Multivariate 170 72 AR(1) 0.100 0.099 0.012 0.001 0.012 0.012 0.016 0.952 1.000

Multivariate 170 72 AR(3) 0.100 0.100 0.012 0.000 0.012 0.013 0.065 0.960 1.000

Multivariate 170 72 CR(8) 0.200 0.202 0.015 – 0.002 0.015 0.014 – 0.013 0.954 1.000

Multivariate 170 72 CR(12) – 0.200 – 0.200 0.015 0.000 0.015 0.015 – 0.054 0.936 1.000

Multivariate 170 72 ζy1 ;i; j 2.250 2.244 0.032 0.006 0.032 0.031 – 0.026 0.938 1.000

Multivariate 170 72 ζy2 ;i; j 2.250 2.240 0.036 0.010 0.035 0.034 – 0.022 0.944 1.000

This is the summary of the confirmatory estimates across each of the missing data simulations. Simulation refers to the way in which the data were

simulated. T refers to the total number of time points for each person, %M refers to the percentage of missing data which was missing at random and was

different for each person, and AR/CR refers to whether the simulated model term of interest was autoregressive (AR) or cross-regressive (CR). The

symbol ∆t refers to the time difference in which the model was simulated. These results depict (1) simulated θ (the ways in which the data were

simulated); (2) the mean θ̂ values; (3) the root mean square error (RMSE), which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H
∑H

h¼1 θ̂h−θ
� �

r

2; (4) bias, which is defined by 1
H
∑H

h¼1 θ̂h−θ
� �

;

(5) the standard deviation of θ̂ across Monte Carlo runs; (6) the mean standard error (SE) across Monte Carlo runs; (7) the mean relative deviance of the

SE (RDSE), which is defined by
Mean SE−SD of θ̂

SD of θ̂
; (8) coverage, which is the proportion of simulated values that fall within the 95% confidence intervals

across Monte Carlo simulations; and (9) power, defined as the proportion of parameter estimates across theMC runs whose 95% confidence intervals do

not contain zero.
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modeling frameworks toward the issue of lag detection.

Second, this novel combination of GAMM and state-space

subroutines results in high detection of the simulated lag struc-

ture with satisfactory point estimates, reasonable standard er-

ror estimates, and relatively high power. Additionally, this

article builds on prior findings that evaluated the feasibility

of drawing inferential conclusions concerning the dynamics of

a system when discrete-time models are fitted to irregularly

spaced data that are binned at equally spaced time blocks (de

Haan-Rietdijk et al., 2017). Our stimulation results extend

those findings in three notable ways: (1) The results suggest

that this method of binning irregularly spaced data—which

inevitably leads to large proportions of missingness—yielded

reasonable inferential results with DTVEMwhen the lag order

used in model fitting mirrored the true lag order in data gen-

eration defined with ∆t = 1; (2) they provide an assessment of

the extent to which variable selection tools in the regression

framework such as GAMM can be used to uncover unknown

but potentially complex lag structures; and (3) they reveal the

quality of the point and standard error estimates, as well as the

strengths and limitations of the proposed approach when used

to estimate VARmodels of complex lag structures with little a

priori knowledge on the lag structures of the data. Finally, by

offering this tool within a convenient user-accessible format, it

allows users who are not overly familiar with either GAMM

or state-space modeling frameworks to run these models in a

more accessible and highly automated fashion.

One of the most important aspects of the DTVEM is its

ability to easily help users visualize and explore possible

changes in the dependent variables as linear as well as nonlin-

ear functions of time, time differences, and other variables

implicated in the system’s dynamics. For instance, although

many systems that conform to a simplex structure (Guttman&

Guttman, 1965) show reduced autocorrelations between occa-

sions that are closely spaced in time than those that are further

apart—thereby manifesting a monotonic decrease in autocor-

relations with an increase in time differences (or time lags)—

abundant examples exist that point to the contrary. Consider

the results of the empirical example, in which nervousness

predicted heart rate 8 and 12 h later. In this case, the partial

cross-correlational structure of the data changes as a

nonmonotonic function of time differences as the cross-

regression effect of nervousness on heart rate does not degrade

monotonically as time elapses—as would be predicted by a

simplex data structure—but rather shows abrupt jumps at par-

ticular lags. Processes that are characterized by only higher-

order lags are also commonly seen in seasonal (e.g., diurnal,

weekly, monthly, annually) processes that only manifest sig-

nificant associations with prior levels at specific lags (e.g., a

strictly weekly process may only show a significant lag at a

time interval of 7, but no other, lower-order lags). The auto-

and cross-correlational structures of empirical data may also

show further dependencies on other variables, such as time

(Chow et al., 2011), spatial region (Crainiceanu, Ruppert,

Carroll, Joshi, & Goodner, 2007), and other intra- and inter-

individual difference characteristics (e.g., Chow & Zhang,

2013).

Other approaches have been previously used to select and

model optimal lag structures. For example, Ho, Shumway,

and Ombao (2006) used the Bayesian information criterion

(BIC) to perform model selection in VAR(1) model. Such an

information criterion-based approach requires that a research-

er fits all possible candidate models and compares their BIC

values before selecting the final model. Naturally, the number

of candidate models considered is typically small (e.g., Ho et

al., 2006, only considered up to one lag) to render the model

comparison process computationally feasible. As an example,

consider the number of models required for two variables with

15 time lags. This would require fitting 60 separate models

(there are 60 possible lag coefficients), followed by a possi-

bility of exploring all potentially significant lags. This could in

practice require a total of 60! = 8.32 × 1081models to be fit, if

selection was based on the BIC. Higher-order lags might be

ignored and as we have illustrated, such omission can lead to

fundamentally incorrect inferential conclusion. In addition,

this approach alone is only practically feasible in particularly

small-use scenarios (i.e., both small number of variables and a

small number of lags).

Admittedly, DTVEM is designed to be a preliminary tool.

As an example, if lags of 3 and 12 were identified by means of

DTVEM in a study involving hourly measurements, this then

raises the question of whether the process of interest should be

modeled as an AR process with nonzero coefficients at lags of

3 and 12 [an AR(3,12) process] or an AR process with non-

zero coefficients at lags of 1 and 4 [an AR(1,4) process], with

each lag spaced 4 h apart. Ultimately, DTVEM, as it stands, is

meant to serve as an accessible exploratory tool—a first step

toward identifying the proper lag structures for a specific class

of models. The final choice and model formulation still de-

pend on characteristics of the constructs under study and the

change characteristics expected of them.

In addition to the strengths of the DTVEM, it is important

to note that the approach also has limitations and other unre-

solved issues. First, DTVEM operates only to detect the opti-

mal lag structure in discrete-time VAR(p) models. In the fu-

ture, DTVEM could be modified to allow for continuous-time

modeling variations (e.g., Oud, 2004) or other hybrid

continuous-discrete variations (Bar-Shalom, Li, &

Kirubarajan, 2001). However, just as lag selection is a central

issue in fitting discrete-time VAR models, users interested in

fitting continuous-time models have to select the order of their

models (i.e., the highest-order changes, or derivatives, in-

volved in the model), which usually take on the form of ordi-

nary differential equations (ODEs) and stochastic differential

equations (SDEs). Thus, continuous-time models are not im-

mune from the issue of lag selection, although they do have
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some advantages in that the results from continuous-time

models are not affected by the measurement time intervals

used in a particular study, whereas time intervals and lags

can be confounded in discrete-time models. Nevertheless,

dominant continuous-time models have their own limitations

and computational difficulties. For example, the exact

discrete-time approach advocated by Voelkle, Oud, Davidov,

and Schmidt (2012) requires one to work with the solutions of

SDEs. Not all SDEs have known analytic forms, and even

when they do, the solutions can take on very different forms

depending on the order of SDEs, and often they require the

specification of complex constraints in the model-fitting pro-

cess. The results from models that include high-order deriva-

tives (e.g., beyond rates of change and changes in the rates of

change) may also be difficult to interpret substantively. In

contrast, there is a well-established statistical and econometric

literature on how to diagnose, explore, estimate, and interpret

results from discrete-time models such as SARIMA models.

Finally, some special cases of discrete-time models cannot be

obtained in the continuous-time framework [e.g., AR(1) pro-

cess with an AR(1) weight of – 1]. We limited ourselves to lag

detection in a discrete-time framework in the present article.

Future studies should extend this line of work to continuous-

time models.

Additionally, the present simulation studies did not consid-

er person-specific differences in dynamics or lag structures.

Given this, future extensions of the DTVEM model may be

able to include random effects within the GAMM framework

to model person-specific differences such as individual differ-

ences in intercept, as well as the issue of lag identification in

discrete data. Although the number of parameters estimated

were large within simulations (i.e., 60 lag parameters in

Simulation 3), the present simulation studies were limited to

bivariate VARmodels with two dependent variables. As such,

our conclusions are limited in generalizability to particular

kinds of VAR models. Future work should add simulation

by increasing the number of independent and dependent var-

iables considered, especially given that intensive longitudinal

datasets often are collected with a large number of variables.

Doing this would be especially important given the increased

popularity of network psychometric models, and extensions of

these models to incorporate VAR-based lag structures within

network analysis (Epskamp et al., 2018; Marsman et al.,

2018). Moreover, as the inclusion of latent variables is cur-

rently not feasible within the GAMM framework, we have

restricted our attention to a VAR(p)—namely, a manifest var-

iable framework. An alternative framework focuses on evalu-

ations of lag structures in models involving latent variables

(Browne & Nesselroade, 2005; Molenaar, 1985; Molenaar &

Nesselroade, 2001; Zhang & Browne, 2010). Given that the

optimal lag structures for the same data set may differ depend-

ing on whether lag relations are assumed among manifest

variables or as exerted through latent factors, one important

extension to the present work would be to extend the proposed

methods to facilitate the diagnosis of lag structures in models

involving latent variables. Possible ways to accommodate la-

tent variables may include the incorporation of a third stage in

DTVEM to estimate latent variable scores that are then used

within the exploratory GAMM stage, followed by the speci-

fication of state-space models in the confirmatory stage that

can accommodate latent variables.

In summary, current exploratory methods to identify opti-

mal times at which processes predict one another are inade-

quate for multisubject data and data with substantial

missingness. In response to these inadequacies, we set out to

design an exploratory model that would address these con-

cerns. The principal utility of this tool is to provide a user-

accessible manner to uncover and estimate optimal lag orders

in a state-space framework. On the basis of this model’s per-

formance in simulation studies and the utility demonstrated in

the empirical example, DTVEM appears to fulfill these needs.

Appendix: Example R code to run DTVEM

Load the DTVEM Package

library(DTVEM)

Load the data

data(example1dat)

Run the model

out = LAG("X", differntialtimevaryingpredictors = c("X"),

outcome = c("X"), data = exampledat1, Time = "Time", k=9,

ID="ID")

Summarize the results

summary(out)

See the options in the DTVEM Function

?LAG

Default Model Fitted

LAG(..., differntialtimevaryingpredictors = NULL, outcome =

NULL,

controlvariables = NULL, data = NULL, ID = "ID", Time

= NULL,

k = 10, k2 = 10, k3 = 3, k4 = 3, controllag = NULL,

standardized = TRUE, predictionstart = NULL,

predictionsend = NULL,

predictionsinterval = NULL, software = "OpenMx",

i n d e p e n d e n t p r e d i c t o r s = F A L S E ,

minimumpracticalsignificance = NULL,

g amma = 1 , m i nN = 30 , d e b u g = FALSE ,

OpenMxStartingValues = 0.3,

ResidualAnalysis = "Group", blockdata = FALSE,

rounddecimals = TRUE,

maxintermediaterounds = 10)
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Descriptions of Primary Options in DTVEM

differntialtimevaryingpredictors

The variables that will be a varying-coefficient of differential

time, meaning that this defines the variables used as x*1;lag;i;l in

f 2;l;1 ∆t*1i;l

� �

x*1;lag;i;l. These are the variables that one is inter-

ested in ascertaining the optimal lag structures in which a

construct predicts the outcome(s). This must be specified as

a vector using c("variables here"). e.g. c("X","Y").

(REQUIRED).

outcome

This is each of the outcome variables. Specified as

outcome="outcomevariablename" for a single variable or

outcome=c("outcomevariablename1","outcomevariablenam-

e2") (REQUIRED)

data

Specify the data frame that contains the data e.g.

data=dataframename (REQUIRED)

ID

The name of the ID variable. E.G. ID = "ID" (must be spec-

ified). (REQUIRED)

Time

The name of the Time variable. E.G. Time = "Time" (must be

specified). (REQUIRED)

k, k3, k4

The term k refers to the number of k selection points used in

the model for the exploratory stage, as informed by diagnostic

statistics frommgcv (see ?choose.k in mgcv package for more

details; the ideal kmay be selected on the basis of evaluations

of diagnostic statistics from mgcv). The term k3 refers to the k

selection points used in the model for the nonparametric time

trend (i.e., controlling for the time trend of the population).

The term k4 refers to the number of k selection points used in

the model for the varying coefficient in the later iterations of

the exploratory stage. It is safe to include the smallest k for

which the Bkindex^ output by the DTVEM function is no

longer significant. (OPTIONAL, BUT RECOMMENDED).

standardized

This specifies whether all of the variables (aside from Time)

should be standardized. Options are TRUE, FALSE, and

"center". TRUE means within-person standardize each vari-

able (a.k.a/ get the person-centered z-scores), FALSE means

use the raw data. "Center" means to only within-person mean-

center the variables. Default = TRUE. FALSE is not recom-

mended unless you have done these transformations yourself

(OPTIONAL)

ResidualAnalysis

Only applies when software = "OpenMx". Analyze the residuals

of the time series with OpenMx after factoring out the non-linear

effect of time (takes time trends into account). Can be run only at

the group level (faster), or it can also be run with a random effect

splines of time (slower) by setting ResidualAnalysis =

"Individual". Default = "Group" (OPTIONAL)
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