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Abstract

With the recent growth in intensive longitudinal designs and the corresponding demand for methods to analyze such data, there has
never been a more pressing need for user-friendly analytic tools that can identify and estimate optimal time lags in intensive
longitudinal data. The available standard exploratory methods to identify optimal time lags within univariate and multivariate
multiple-subject time series are greatly underpowered at the group (i.e., population) level. We describe a hybrid exploratory—
confirmatory tool, referred to herein as the Differential Time-Varying Effect Model (DTVEM), which features a convenient user-
accessible function to identify optimal time lags and estimate these lags within a state-space framework. Data from an empirical
ecological momentary assessment study are then used to demonstrate the utility of the proposed tool in identifying the optimal time
lag for studying the linkages between nervousness and heart rate in a group of undergraduate students. Using a simulation study, we
illustrate the effectiveness of DTVEM in identifying optimal lag structures in multiple-subject time-series data with missingness, as

well as its strengths and limitations as a hybrid exploratory—confirmatory approach, relative to other existing approaches.
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Since the 1990s, studies utilizing intensive longitudinal data
(ILD; e.g., ecological momentary assessment, experience
sampling, or physiological measurements) have grown expo-
nentially in popularity. For instance, Google Ngram Viewer,
an online phrase-usage graphing tool, suggests that publica-
tions with the term “experience sampling assessment” had
grown by 385% in 2008, relative to 1990 (Michel et al.,
2011). Among the most popular ILD designs in the behavioral
sciences are variations of the multivariate, multiple-subject,
replicated time-series design (Nesselroade & Ford, 1985),
wherein intensive repeated measures of multiple variables
within relatively short time lengths are collected from multiple
subjects (prototypically, about four or five times daily over the
course of a week; Bolger & Laurenceau, 2013; Nesselroade &
Ford, 1985; Shiffman, Stone, & Hufford, 2008).

Coinciding with its increased prevalence, there has been
great progress in analyzing ILD (Walls & Schafer, 2006).
This includes linear and nonlinear time series models (e.g.,
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variations of vector autoregressive moving average
[VARMA] models), state-space models, dynamical systems
models, multilevel modeling, and various other examples
(Boker & Graham, 1998; Box, Jenkins, & Reinsel, 2013;
Browne & Nesselroade, 2005; Durbin & Koopman, 2012;
Goldstein, Healy, & Rasbash, 1994). Importantly, the ad-
vancement of new methods has increased the variety of re-
search questions that can be answered by ILD.

In a discrete-time modeling framework, one model varia-
tion of interest is a vector autoregressive model of order p
[VAR(p) model], in which multivariate measurements of a
set of endogenous (dependent) variables from up to p mea-
surement occasions ago (i.e.,r—1,¢—2,...,t—p) are used to
explain these variables’ current values at time £. VAR models
continue to serve as an important basis for many substantive
studies and new methodological innovations (Bringmann et
al., 2017; Chow, Hamagani, & Nesselroade, 2007; Epskamp
et al., 2018; Gates, Molenaar, Hillary, Ram, & Rovine, 2010).
Values from previous occasions are referred to as lagged re-
sponses, with the number of lags defined as the number of
backward shifts in measurement occasion such that a lag-0
response refers to the current response at time ¢, a lag-1 re-
sponse refers to the response at time # — 1, a lag-2 response
refers to the response at time 7 — 2, and so on. Relatedly, p in a
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VAR(p) model is denoted as the lag order of the VAR process.
The VAR(p) model is expressed as

Vie =AW YA 0+ A, i (1)

where y; , represents an M X 1 vector of observed variables
measured on occasion £, A, is an M x M matrix of regression
coefficients containing the autoregression and cross-
regression coefficients from lag p (i.e., from time ¢ — p) on
the m observed variables at time #; and €; ;is an M x 1 vector
of residuals (process noises). A VAR(p) model can also be
conceived as a set of difference equations or equivalently,
continuous-time differential equation models in which the rate
of change, change in the rate of change, and other higher-order
changes are defined as unfolding over a time interval, Az, of
1.0 (Hamilton, 1994)." In practice, discrete-time models such
as VAR(p) models have typically been fitted to data measured
at discrete, mostly equally spaced intervals (aside from occa-
sional missingness). Most often, the measurement interval in a
study is assumed by design to correspond to Af = 1 in the
underlying difference or differential equation model.

The measurement intervals utilized for data collection have
direct implications on the strengths of the regression coeffi-
cients linking the lagged responses to the current responses at
time t—a point that has been brought up by several re-
searchers in advocating direct use of continuous-time models
over discrete-time models (Kuiper & Ryan, 2018; Voelkle &
Oud, 2013). We will return to this point in the Discussion
section. For now, suffice it to say that when researchers have
equally spaced data, fitting discrete—as opposed to continu-
ous—time to the data often has some practical advantages. For
instance, a wide and well-established array of tools are avail-
able in the statistical and econometric literature for diagnos-
ing, exploring, and interpreting results from discrete-time
models, particularly those involving complex lag structures
(e.g., when p is high, and/or when different processes show
distinct optimal lag orders). Inference and interpretations of
continuous-time models have thus far been limited to those
involving a lower lag order, which, in a continuous-time
framework, mirrors the highest-order changes included in a
differential equation of choice (e.g., rate of change is a first-
order change, acceleration/deceleration is a second-order
change). Tools for model exploration are still nascent, and
estimation of continuous-time models is often characterized
by greater numerical difficulties than estimation of their
discrete-time counterparts of the same order.

When a VAR(p) model is determined to be the model
of choice and researchers have a priori knowledge
concerning the true lag order, p, of the process, re-
searchers can proceed directly to model fitting. However,

! Using the analogy of distance traveled by a car, the rate of change corre-
sponds to the instantaneous speed of the car, the change in the rate of change
refers to the current acceleration or deceleration of the car, and so on.
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when the optimal lag order is unknown, the lag order is
often determined using exploratory tools such as autocor-
relation, partial autocorrelation, cross-correlation, and par-
tial cross-correlation plots (Chatfield, 2013; Turchin &
Taylor, 1992).? Because these diagnostic methods originat-
ed primarily from the time series or econometric literature,
current software implementation of the autocorrelation,
partial autocorrelation, cross-correlation, and partial cross-
correlation functions is restricted for use with single-
subject time series, univariate or bivariate data, and often
assuming no missingness. When multiple endogenous var-
iables are present, selecting the optimal lag order for each
process and that for all the processes as a system can
quickly become a cumbersome variable selection problem:
not all processes would have the same p, and not all the
coefficients linked to the t — 1, t — 2, . . ., t — p lagged
responses of the same variable (termed auforegression co-
efficients) and of different variables have to be freed up
for reasons of parsimony.

To illustrate the utility of the partial autocorrelation and partial
cross-correlation functions in the scenario for which they were
originally intended (Turchin & Taylor, 1992), we first present
diagnostic plots of the partial autocorrelation with an
autoregressive model of order 1 [a VAR(1) model; termed
Hllustration 1, which is based on Simulation 1 below], one per-
son, 100 time points, and complete data. In particular, the partial
autocorrelation function, which summarizes the correlations of a
variable with itself at various lags after the effects of lower-order
lags have been partialed out, correctly identifies the
autoregressive lag of 1 with no Type I errors (Fig. 1). In our
second illustration (i.e., [llustration 2), we present diagnostic
results from brief simulation based on a bivariate model of order
14 [a VAR(14) model], with simulated nonzero autoregression
coefficients at lags 1, 3, 4, 12, and 14 for one variable; nonzero
autoregression coefficients at lags 1 and 3 for the second variable;
and nonzero cross-regression coefficients at lags 8 and 12 for the
first variable on the second variable (see the empirical example
below for the motivation, as well as the multivariate case in our
Simulation 3 below). With simulated data from a single subject
over 170 time points and no missingness, the diagnostic results
based on the partial autocorrelation and partial cross-correlation
functions are shown in Fig. 2. In particular, the partial autocorre-
lation function estimated three of the seven nonzero
autoregressive lags as significant. However, it lacked power to
detect the remaining lags, whose coefficients were characterized
by smaller (absolute) magnitudes. The partial cross-correlation
function (see Wei, 2006, pp. 402—414), which serves to detect
correlations of a variable with another variable at prespecified

2 For this article, the term “optimal lag” is defined as the lags that best predict
anticipated outcomes. This term is used when the lag structure in the popula-
tion is unknown (i.e., in normal empirical situations). The term “true lag order”
is the lag order in the population.
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Fig. 1 This plot depicts the partial autocorrelation function results with
single-subject data, 100 time points, and complete data. The solid black
line represents the partial autocorrelation function estimates; the dashed
black lines represent the critical values [based on +2/4/(7—1), where T
= the number of time points, 100 in this case]. In this plot, the lag of 1 is
correctly identified as being significantly different from 0. In addition,
there are no Type I errors (a.k.a. false positives). This is the scenario for
which the partial autocorrelation function was designed.
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Fig. 2 These plots depict the partial autocorrelation and partial cross-
correlation function results with single-subject data, 170 time points,
and complete data. The solid black lines represent the partial autocorre-
lation function estimates; the dashed black lines represent the critical
values [based on £2/1/(7—1), where T = the number of time points,
170 in this case]. This figure depicts from left to right, top to bottom: (top
left) the partial autocorrelation function results of y; on itself (lags 1 and
12 are correctly identified as significant, but lags 3, 4, and 14 are not
identified due to their low magnitude, and lag 7 is incorrectly identified

lags after the effects of lower-order lags have been partialed out,
correctly identified both nonzero cross-regressive lags (although
also two lags were incorrectly identified as significant). These
results suggest that although these methods might be underpow-
ered in low-effect-size scenarios, these tools performed adequate-
ly in identifying lags with higher strength in complete single-
subject time series (i.e., their intended function).

Next, we focused on scenarios that were explicitly be-
yond the intended purpose of these exploratory functions,
with the sort of data typically seen in the behavioral sci-
ences (Turchin & Taylor, 1992). Particularly, we focused on
the performance of these methods in estimating group-level
statistics from multiple subjects with missing data. In a
third simulation based on the same simulation model in
[lustration 2, we tested the utility of these exploratory func-
tions for situations that are typical of daily-diary data in the
behavioral sciences (Roche, Jacobson, & Pincus, 2016), in
which there were a large number of subjects and short time
series. We retained complete data in this simulation to show
that even without missing data (which is quite uncommon
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as significant); (top right) the partial autocorrelation function results of y,
on itself (lag 1 is correctly identified as significant, but lag 3 is not iden-
tified as significant, and lag 15 is incorrectly identified as significant);
(bottom left) the partial cross-correlation function results of y; on y, (lags
8 and 12 are correctly identified as significant, and lag 11 is incorrectly
identified as significant); and (bottom right) the partial cross-correlation
function results of y, on y; (where lag 6 is incorrectly identified as
significant). This is the scenario for which the partial autocorrelation
function and partial cross-correlation function were designed.
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in ILD within the behavioral sciences), the partial autocor-
relation and partial cross-correlation functions were not ad-
equate for such designs. With 159 subjects, 14 time points,
and complete data (i.e., [llustration 3), the results were sub-
stantially worse than for the single-subject simulation (see
Fig. 3). In particular, no lags were identified as significant,
and there were no clearly recognizable patterns even when
collapsing across the 159 different partial autocorrelation
and partial cross-correlation estimates. This showed that
the partial autocorrelation and partial cross-correlation
functions did not perform adequately in multiple-subject
data with short time series.

Fourth, we demonstrated that the partial autocorrelation and
partial cross-correlation functions performed poorly with single-
time-series data when there were missing data (i.e., Hlustration
4). In simulating single-subject data with 72% of the data missing
(which was the level of missing data in the empirical example),
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Fig. 3 These plots depict the partial cross-correlation function results
with multiple-subject data, 14 time points, and no missing data. The gray
lines in this figure depict the results of each of the individual cross-
correlation functions. The solid black lines represent the averages of the
individual cross-correlation function estimates, to obtain a group-level
autocorrelation function estimate. The dashed black lines represent the
critical values [based on £2/4/(7T—1), where T = the number of time
points, 14]. This figure depicts, from left to right, top to bottom: (top left)
the partial autocorrelation function results of y; on itself; (top right) the
partial autocorrelation function results of y, on itself; (bottom left) the
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the model incorrectly identified 24 lags as significant (i.e., 24
Type 1 errors) and failed to identify seven of nine nonzero lags
as significant in the correct direction (see Fig. 4). Further details
of these demonstrations are provided later, in the context of a
simulation study (see Simulation 3). For now, they serve to high-
light the inadequacies of current exploratory methods in correctly
identifying potential lags in multiple-subject time-series data of
finite lengths and with missing data—namely, the kind of ILD
that are typically available in psychology and other behavioral
sciences.

One alternative strategy is to simply ignore higher-order
lags due to convenience or due to theory, and simply to focus
on lower-order lags (most typically, just lags of 1). This strat-
egy assumes that the effects of higher-order lags are negligible
as compared to those of lower-order lags. In other words, there
are stronger associations among measurement occasions that
are more closely separated in time than among those that are
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partial cross-correlation function results of y; on y,; and (bottom right)
the partial cross-correlation function results of y, on y;. In all plots, no
lags are correctly identified as significant. This demonstrates that the
partial autocorrelation and partial cross-correlation function performs
quite poorly with multigroup data, because the formula for the 95%
confidence lines utilizes 7 from a single subject and does not pool
information across multiple subjects. Note that if N is added to the

critical value formula £2/+/(7*N—1), most of the simulated nonzero
lags would still not be significant, and many spurious lags would be
identified.
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Fig. 4 These plots depict the partial cross-correlation function results
with single-subject data, 170 time points, and 72% of the data missing.
The solid black lines represent the partial cross-correlation function
estimates. The dashed black lines represent the critical values [based on
+2/4/(T-1), where T = the number of time points, 48]. This figure
depicts, from left to right, top to bottom: (top left) the partial
autocorrelation function results of y, on itself; (top right) the partial
autocorrelation function results of y, on itself; (bottom left) the

farther apart—not an unreasonable assumption for many pro-
cesses in the social and behavioral sciences. However, as we
next illustrate, the impact of failing to incorporate higher-order
lags when they exist may not be as innocuous as is commonly
assumed. Consider the same VAR(14) model in our first illus-
tration, but now with 72% missing data (see Simulation 3). If
one simply ignores all higher-order lags beyond lag 1 and
proceeds with estimating a VAR(1) model, inaccurate point
estimates would result. In particular, when ignoring higher-
order lags, the 95% confidence intervals for the autoregression
coefficient of lag 1 for y; did not include the simulated popu-
lation value. Moreover, the cross-regressive lag of y, on y; at
lag 1 was identified as significant. In contrast, when the data
were fitted with a correctly specified lag structure, the point
estimates were all extremely close to their simulated values
(see the results of Simulation Study 3 below for greater detail).
Thus, in addition to obtaining an incomplete test of one’s
theories, ignoring higher-order lags can lead to misleading
inferential results.
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partial cross-correlation function results of y; on y»; and (bottom right)
the partial cross-correlation function results of y, on y;. In these plots,
only lag 1 for y; on y; and lag 3 for y, on y, are correctly identified as
significant. Of the other seven simulated nonzero lags, two were
identified as significant, but in the incorrect direction, and 24 Type |
errors are made. This demonstrates that the partial autocorrelation and
partial cross-correlation functions both perform quite poorly at the
single-subject level when there are missing data.

The present article describes a convenient, user-accessible
exploratory and confirmatory tool to find the optimal lag struc-
ture in VAR(p) models (Browne & Nesselroade, 2005;
Nesselroade, McArdle, Aggen, & Meyers, 2001). In particular,
the present procedure allows users to first narrow the search
space estimated in VAR(p) models by using variable selection
methods grounded within the penalized additive modeling
framework (Wood, 2003, 2006). Within the penalized additive
modeling framework, each of the potential lags in the search
space is translated into a large number of independent variables
or manifest predictors (e.g., [llustration 3, with 2 predictors x 2
dependent variables x 14 lags considered would result in a total
of 56 manifest independent variables). Nevertheless, variable
selection methods in the penalized additive framework allow
one to reduce the search space by down-weighting negligible
(near-zero) lag coefficients to zero (similar to Gasparrini,
Armstrong, & Kenward, 2010). After determining the optimal
lag structure [including information on p in a VAR(p) model, in
conjunction with the auto- and cross-regression coefficients that

@ Springer
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are to be freely estimated vs. constrained to be zero], the results
from fitting the final selected VAR(p) model in a confirmatory
framework are returned. Ultimately, the primary utility of this
approach is to offer users a convenient way of exploring and
modeling optimal lag structures in a VAR(p) framework.

In addition to describing the novel combination of these two
methods for modeling frameworks in identifying and modeling
the optimal lag structure, the present article provides an empirical
illustration and simulation studies demonstrating the utility,
strengths, and limitations of these techniques.

Differential Time-Varying Effect Model
(DTVEM)

DTVEM is a set of integrated subroutines for diagnosing the
optimal lag identification in equally spaced ILD for single or
multiple subjects.’ In particular, DTVEM combined some of
the flexible smoothing and estimation routines for fitting gen-
eralized additive mixed models (GAMMs, available as part of
the R package mgcv; Wood, 2006) and the state-space estima-
tion routines available in the R package OpenMx (Chow, Ho,
Hamaker, & Dolan, 2010; Harvey, 2001; Neale et al., 2016) to
explore, diagnose, and fit group-based VAR models of un-
known lag structures. That is, we assumed that the underlying
model of interest was a group-based VAR model with the
same lag structure across all individuals, but this optimal lag
structure was unknown and had to be detected using multivar-
iate, replicated time series from multiple subjects.

The exploratory stage using GAMM was useful in narrowing
down the search space, as lags that had substantial effects on
outcome variable(s) were weighted heavily, and lags that had
negligible effects on outcome variable(s) were down-weighted.
In “smoothing over” the effects of successive lags, this ap-
proach provides a parsimonious but flexible way to explore
relationships among multiple variables while considering possi-
ble lagged associations among them. Using GAMM to narrow
down the search space prior to confirmatory model estimation
can be important, as large numbers of lags can be computation-
ally inefficient, and interdependencies from concurrent and
lagged associations can sometimes interfere with confirmatory
estimation (e.g. Bottan & Perez Truglia, 2011; Buckner, Crosby,
Wonderlich, & Schmidt, 2012; Buysse et al., 2007; Carels et al.,
2004; Starr & Davila, 2012). Following this exploratory stage
with a confirmatory stage within the state-space framework sub-
sequently allows one to estimate the identified lags with greater
precision than at the exploratory stage. The integrated routines
cycle iteratively among exploratory lag detection and confirma-
tory model fitting and output maximum-likelihood estimates

3 These integrated routines have been compiled into a working R package that
can be downloaded via the following Web address: www.nicholasjacobson.
com/projects/dtvem.
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from the “final” model in the final iteration. These automated
routines were labeled using the DTVEM function shown in the
Appendix. Because they utilized subroutines developed for both
the GAMM and state-space frameworks, we describe each of
these in turn.

Narrowing down the search space
with the generalized additive mixed effects model
(GAMM)

To narrow down the search space for the confirmatory stage,
DTVEM offers users the choice to first explore the lag struc-
ture in the GAMM framework prior to proceeding to the con-
firmatory stage. The general GAMM framework, which ex-
tends the generalized linear model (McCullagh & Nelder,
1989) and generalized additive model (Hastie & Tibshirani,
1993; James, 2002), postulates that person i’s any one partic-
ular response variable, y; (where i = 1, . . ., n; n indexes the
total number of subjects), may be distributed as any of the
members from the exponential family (e.g., normal, Poisson,
gamma, multinomial, etc.; for further examples, see chap. 13
of Cohen, Cohen, West, & Aiken, 2003). The mean of y;, p1; =
E(y,), is linked to a semiparametric predictor, 7);, expressed as

K 0o C
n = XiB+ k;fuc (xl,k.i) + 2 X fZ,c,r) (xz‘,,’,-)xzr?u’i

o=1c=1

0 s
+ 21 Zlfl,s,q <x3¢%i’x3’7s¢i> +Zib; (2)
q=1s5=

via 1; = g(u;),where g is a link function that maps the mean of y;
to n; , and gﬁl(ni) is the reverse transformation that converts
7; into p;. The first and last terms constitute the usual parametric
components in standard linear mixed effects models; and the
second, third, and fourth terms are nonparametric components
(i.e., of unknown functional forms) wherein the effects of a
series of covariates on the mean of the transformed dependent
response variable are of unknown functional forms. Specifically,
X;is a1 x njdesign vector that contains person i’s fixed-effects
components; 3 is the corresponding ngx 1 vector of fixed-
effects parameters; Z; is the 1 X nb random-effects design vector
for person i; and b; ~ N(0,),) is a vector of random effects,
assumed to be multivariate normally distributed with zero
means and positive-definite covariance matrix 1,. The terms
S, 1o, ¢, o), and f5 () are nonparametric functions involv-
ing the covariates in different ways.* The covariates that appear

4 GAMM provides a collection of procedures for approximating these func-
tions and the resultant curves using different smoothers. f;, () =f3, s, ¢-
are typically referred to as smooth functions, and the curves or lines produced
by these functions are denoted as smooths (Hastie & Tibshirani, 1990;
McKeown & Sneddon, 2014). Note that because the number of basis functions
used with each covariate can generally be different, the nonparametric part
cannot be written in matrix form because the dimensions of the basis coeffi-
cient vectors and basis function vectors generally differ between covariates.
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in each smooth function may be different, and we thus use
different indices and subscripts to distinguish the covariates that
appear in the three sets of smooth functions.

The term f7 4(.) is the smooth function of the kth covariate,
X1, (k=1,..., K). For instance, if y; represents depression
for person i and x;_, ; represents the anxiety of person 7, f 4 (.)
then captures the unknown association between depression
and anxiety across all the individuals in the sample. This is
specified as s(x;, ;) in the model specification portion of the
gamm function. Because a nonparametric function is used, the
resultant smooth (approximation curve) may be linear or non-
linear. The third term allows the smooth function for the oth
covariate, f> . ,(x2. . ),c=1,...,C;o=1,..., 0),to depend
on, or interact with another (unsmoothed) covariate Xy e
(Ahmad, Leelahanon, & Li, 2005; Hastie & Tibshirani,
1993). In GAMM, the unsmoothed covariate is specified in
the model specification line using the “by” keyword to specify
a varying-coefficient model (Ahmad et al., 2005; Chow, Zu,
Shifren, & Zhang, 2011; Hastie & Tibshirani, 1993; Shiyko,
Lanza, Tan, Li, & Shiffman, 2012), in which the effect of the
cth covariate is assumed to vary nonparametrically but
smoothly over another covariate such as time or geographical
regions. Finally, the term f3,, (s=1,...,8;9=1,...,0)isa
tensor product used to approximate the unknown but possibly
jointly nonlinear effects of a pair of covariates on 7.

Typically, when researchers fit VAR-type models in a regres-
sion framework, one approach is to create p new lagged vari-
ables for the intended lag order. So for four lags, four new
variables will have to be included in the data set and model
(e.g., Chow, Haltigan, & Messinger, 2010). However, this re-
quires a priori decision on p, the maximum order in the VAR(p)
process. Specifying an arbitrarily large value for p, in contrast,
would lead to a large number of independent variables and
correspondingly, missingness in these independent variables.
Using GAMM for this exploratory stage, we estimate one lag
variable that contains all possible lags; differences across lags
are only distinguished by means of a covariate, time differences
(i.e. A?). Thus, at this exploratory stage, we fit lags using the
varying-coefficient model in GAMM [using the third term,
Srcola 0. ), c=1,...,Co=1,..., 0], and thereby estimate
the linear association between lagged variables and the outcome
as a smooth function of nonlinear time differences.

See Fig. 5 for an illustration of this exploratory stage when
used to detect significant lagged associations using simulated
data from a model with nonzero lags of 8 and 12 (see the
multivariate example for greater details). These lags are evi-
dent as peaks and valleys whose 95% confidence intervals did
not include zero at time differences of 8 and 12.° These plots

> Note that local peaks are determined by examining the neighboring values
and determining whether the coefficient of interest is greater than these values,
and if the coefficient is also significantly greater than 0. Each local valley is the
inverse of a local peak.
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Fig. 5 These figures present the output from the exploratory stage of
DTVEM. In the first figure, the solid black line represents the predicted
values, and the dashed lines represent the corresponding 95% confidence
intervals. The data-generating model was simulated to have nonzero lags
of8and 12. The label f5 ; 1(Aty;, )V, 1ag, i, 1 depicts the smoothed weight of
V1, lag, i, 1 ON Yj, ; at every possible value of Aty; ;.

also highlight one property or limitation of using the explor-
atory stage of DTVEM alone. That is, in VAR processes—the
kind of group-based process modeled in DTVEM at the mo-
ment—the effects of earlier lags would still linger at later lags
unless the effects of the earlier lags have been partialed out.
This “limitation” is similar in nature to the inadequacy of
diagnosing lag structures in AR processes using auto- as op-
posed to partial autocorrelation functions. Thus, results from
the exploratory step cannot be interpreted alone, but rather
lags identified in the exploratory stage are passed on to the
confirmatory state-space framework.

Social and behavioral scientists are often interested in the
simultaneous estimation of outcomes within a single model to
investigate lead-lag relationships among multiple dependent
variables. In this case, Eq. 2 can be extended to involve M
dependent variables, using the dummy variable indicator ap-
proach by MacCallum, Kim, Malarkey, and Kiecolt-Glaser
(1997).

Because the linear state-space model is parametric in na-
ture, nonparametric (possible nonlinear) time trends identified
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in this exploratory stage are first removed (yielding group-
detrended data) before proceeding to the confirmatory model.

In sum, estimating the associations between the predictor
and the outcome across a smooth of non-linear time differ-
ences help one to detect optimal lag structures. Moreover, this
smoothing procedure helps to retain only the important lags
for the confirmatory stage.

Confirmatory stage: Verification of lag structure via
a confirmatory VAR(p) model

The primary utility of DTVEM is estimating confirmatory
VAR(p) models (see Eq. 1). As an example, consider a
VAR(3) with two dependent variables, which would be
expressed as

{Jﬁ,m} — A, |:yl,i.t—l } +A, |:yl,i,t—2:|+A3 {J’u,z—s } teis (3)
Vit V21 V22 V23

where y; ; ,and y,_ ; ,represent the vector of observed depen-
dent variables measured on occasion £. The matrices A1, A,,
and A5 are each 2 x 2 matrices in this particular example, with
the diagonal entries corresponding to autoregression coeffi-
cients for the two dependent variables at lags 1, 2, and 3,
respectively, whereas the off-diagonal entries represent the
cross-regression coefficients at those lags.

If the user opts to use the exploratory stage, not all of these
auto- and cross-regression coefficients illustrated in Eq. 3
would need to be freed up and estimated all at once. Rather,
subsets of these coefficients, as identified to be significant
within the exploratory stage, are freed up and estimated.
Alternatively, the user can opt to estimate all auto- and
cross-regressions if they so desire. Our particular confirmatory
approach of specifying a VAR(p) process with known lag
structure as a state-space model and obtaining the associated
maximum-likelihood parameter estimates by optimizing the
so-called “prediction error decomposition function” is known
to yield satisfactory point and standard error estimates when
the correctly specified model is fitted (Chow, Ho, et al., 2010;
Harvey, 2001).

Additional exploratory and confirmatory iterations

Following the confirmatory stage, the user is given the
choice to repeat additional exploratory stages to ensure
that all potentially statistically significant lags are identi-
fied while controlling for the effects that were significant
in the confirmatory stage. If the user opts for additional
exploratory stages, the varying-coefficients from the first
exploratory iteration are nearly identical. However, lagged
responses at particular lags found to yield statistically sig-
nificant coefficients at the confirmatory stage were includ-
ed as additional columns in X; in Eq. 2 and removed from
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the list of predictors with varying coefficients, f>, .. ,(.) in
Eq. 2. This additional exploratory stage essentially partials
out the effects from those particular lags before other lags
are evaluated again. Any newly identified lags are then
iteratively re-estimated with the confirmatory stage. If this
is elected by the user, this process is repeated iteratively
until no new peaks or valleys are identified. At the end of
the DTVEM function, DTVEM outputs the last confirma-
tory state-space estimates.

All the stages of the DTVEM models are fully auto-
mated in the R function illustrated in the Appendix. In
practice, a variety of spline functions or penalized spline
functions may be used to obtain the smooths [i.e., all
terms involving f{.)] in these equations. In DTVEM, we
use the thin-plate regression splines, which are a gener-
alization of natural cubic splines (Bookstein, 1989),
meaning that smooth curves are constructed from a se-
ries of higher-order polynomials with specific con-
straints that these functions must be smooth (Wood,
2003). Thin-plate regression splines use an eigenvalue
decomposition to pick the basis coefficients that can
explain the greatest variance. Thin-plate regression
splines have the advantages of (1) not requiring a re-
searcher to choose knot locations, thereby reducing sub-
jectivity in modeling and otherwise having optimal ba-
ses (Wood, 2006) and (2) better accommodating a high
number of predictors than other spline regression
methods.

In summary, DTVEM was built to allow users to
easily explore lags while reducing the search space by
utilizing varying-coefficient models in GAMM and next
using confirmatory state-space models to estimate opti-
mal lag structures in the VAR framework.

Empirical example

The following example demonstrates the utility of DTVEM
using an empirical problem involving the time course of anx-
ious symptoms in daily life. Anxious moods are often thought
to constitute the co-occurrence of several symptoms, includ-
ing both feelings and physiological activation (Lang,
McTeague, & Bradley, 2016). Recent movements have been
particularly focused on the examination of these symptoms
within one integrated framework (Cuthbert & Insel, 2013).
In contrast to theories about anxiety and physiological ac-
tivation being concomitant with one another, there is consid-
erable evidence that physiological measurements and self-
reported anxious moods often have low associations when
measured concurrently (Hodges, 2015; Mauss, Wilhelm, &
Gross, 2004; Morris & Liebert, 1970). Rather than
representing a single unitary construct, recent theories suggest
that anxiety may be apprehended through multiple subsystems
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(e.g., somatic arousal, anticipation of physiological arousal,
and the avoidance of arousal are all considered integrated
subsystems) that are connected to one another over different
timescales (Epskamp et al., 2018; Frank, Jacobson, Hurley, &
McKay, 2017). Although quite recent, such theories of a tem-
poral relationship between physiology and subjective anxiety
build on classical conceptualizations that physiological re-
sponses and the perception of emotion precede and predict
one another over hours in a day (Cannon, 1927; Lange &
James, 1922). Importantly, the interaction between physiology
and feelings of anxiety are thought to inform the manifestation
and maintenance of anxiety disorders (Frank et al., 2017).
Consequentially, this relationship is crucial to the study of
the nature of psychopathology within daily life.

In line with such theories, there is evidence that cognitive
anxiety processes and negative emotions are associated with
physiological activation later in the day and during the subse-
quent night (Brosschot & Thayer, 2003; Brosschot, Van Dijk,
& Thayer, 2007). There also has been a suggestion that this
may be due to the effects of anxiety on the neuroendocrine
system, which can lead to prolonged heart rate over the span
of hours (Mergler & Valcciukas, 1998). Nevertheless, the op-
timal time in which the perception of anxiety and physiolog-
ical activation predict one another remains unknown
(Epskamp et al., 2018).

To date, no researcher has examined lead—lag rela-
tionships between perceptions of anxious moods and
physiological reactions over the course of hours
(Barrett, Quigley, Bliss-Moreau, & Aronson, 2004).
Studying the temporal course of anxious moods over
hours or even days in conjunction with lagged changes
in physiological responses, such as heart rate, could
hasten understanding of the phenomenology of anxious
moods and have implications regarding the intersection
of multiple units of analysis of pathological systems
(Cuthbert & Insel, 2013). For example, if self-reported
anxiety predicts later heart rate, treatment might focus
on cognitive or emotional-processing therapy to prevent
later increases in heart rate (Frank, Jacobson, Hurley, &
McKay, 2017). In contrast, if physiological activation is
a “leading indicator” of the perception of self-reported
anxiety, it may suggest that anxious moods may be due
to noticing changes in physiological responses
(Epskamp et al., 2018). In this case, treatment might
focus on relaxation techniques to directly target the
physiology.

The present empirical example was based on a set of
ecological momentary assessment data collected every
hour that subjects were awake. Most participants (N =
159) completed 68.5% of prompts. The Profile of Mood
States (POMS) “nervous” item was used on a 0-100
slider. Heart rate was measured with an open-source
application that used the camera on smartphones

(Wetherell, 2013). The application used
photoplethysmographic signals that were obtained by
taking pictures of the color changes in the index finger
when the finger was pressed against the phone’s camera.
The application ran for 30 s, and average heart rate was
measured during this time. This method of obtaining
heart rate through smartphone applications has been val-
idated (Scully et al., 2012) and had high convergence
with traditional measures (» =.98-1.00 with heart rate;
Bolkhovsky, Scully, & Chon, 2012). For this illustrative
data, the lack of a priori knowledge about the time
lagged associations in the data motivated our use of
DTVEM.

Since participants were prompted once per hour, the data
were broken down into hourly segments for the analyses. A
total of 7,509 data points were collected, out of a possible
26,880 (if prompts had occurred evenly and each person had
a complete sampling of every period). Thus, on the basis of
the sampling period of interest, the data were 28% complete.
Because there was a theorized bidirectional relationship be-
tween nervousness and heart rate in the literature, a bivariate
model was considered.

Note that the exploratory stage of DTVEM was fitted using
the following equation:

7];1 =/f11 (Ez) + /201 (Atli,l)NRonNR;:l
+ [ (At”#/)NRonHR;I + f3u (Aty;;)HRonNR;,

+ fas (O 1) HRonHR;,

NRonNR represents the autoregressive effect of nervous-
ness, NRonHR represents the cross-regressive effect of ner-
vousness on heart rate, HRonNR represents the cross-
regressive effects of heart rate on nervousness, and HRonHR
represents the autoregressive effects of heart rate. Among the
results available from the exploratory stage were nonparamet-
ric time trends at the group level, shown in Fig. 6. In regard to
the time trends, nervousness showed significant time trends,
that were highest at the first hours in the study and peaked
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Fig. 6 These figures depict the time trends of nervousness and heart rate
over time for the population.
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again approximately 60 h later. Interestingly, heart rate began
to decrease at this time. Notably, participants arrived for a
compliance check at approximately this time, and this system-
ic increase in nervousness may coincide with the evaluation of
their compliance.

The exploratory stage showed significant AR effects of
nervousness and heart rate, such that the strongest effects of
nervousness on nervousness occurred one to four hours later
and peaked again 14 h later. The exploratory stage of DTVEM
showed that the strongest AR effects of heart rate on itself
occurred 1-3 h later. With regard to cross-regressive trends,
the exploratory stage of DTVEM suggested that nervousness
may positively predict heart rate 7 and 8 h later and negatively
predict heart rate 12 h later. The exploratory stage of DTVEM
suggested that heart rate might positively predict nervousness
15, 16, and 17 h later. See Fig. 7 for a summary of the
exploratory-stage varying coefficients.

Following the optional exploratory stage, time trends
were modeled by focusing solely on nervousness and
heart rate time smooths. The residuals of this model
were then passed on to the state-space confirmatory
stage of DTVEM.

The final state-space confirmatory results indicated that
nervousness predicted itself 1 h later (o, ; = 0.275, SE,,, =

DTVEM
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Fig. 7 The results depict the exploratory stage of DTVEM for
nervousness and heart rate, predicting themselves and each other. The
solid lines depict the autoregressive and cross-regressive coefficients
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0.012, p,,,, <.001), 3 h later (a;, 3 = 0.071, SE,,, = 0.014,
Doy, <-001), 4 hlater (o, 4 =0.075, SE,,, = 0.014, p,, , <
.001), 12 h later (v, 12 =0.077, SE,,, ,, = 0.020, p,,, ,, <.001),
and 14 h later (o), 14 = 0.082, SE,, , = 0.019,pm)14 <.001).
The many significant AR terms associated with nervousness
may suggest that the dynamics of nervousness are complex
and conform the multiple time scales. These significant AR
terms may also reflect person-specific time scales and individ-
ual differences, which were not modeled. In contrast, heart
rate significantly predicted itself 1 h (ay, | = 0.144, SE,,, =
0.015,p,,,, <.001) and 3 h (a, 3=0.037, SE,,, =0.016,p,,, ,
=.020) later. The cross-regressive relationships suggested that
nervousness significantly predicted heart rate 8 h later (v, 5. g
=0.055, SE%‘Z‘8 =0.020, Doy = .007). Interestingly, nervous-
ness significantly negatively predicted heart rate 12 h later (v,
2 12 =-0.052, SE, ,, =0.024, p, = .030). Next, we
compared the magnitude of the effect of nervousness on heart
rate 8 h later compared to the effect of 12 h later by removing
the lagged effects alone and examining the differences in mod-
el fit by means of a likelihood ratio test. The change in model
fit (— 2*log likelihood) was greater when the cross-regressive
coefficient of 8 h was removed (- 2 LL = 7.29 with 1 df),
compared to that observed when the coefficient for 12 h later
was removed (— 2LL = 4.68 with 1 df). These results indicate
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over all possible time differences. The dashed lines depict the
confidence bands of the regression coefficients.
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that the effect of nervousness on heart rate was stronger 8 h
later than 12 h later. Notably, the model was tested for station-
arity, and was stationary (based on all the values of the mod-
ulus of the roots of the determinant of the identity matrix
minus the transition matrix being greater than one).

In sum, we did not find a bidirectional relationship between
nervousness and heart rate, but rather, that nervousness unidi-
rectionally drove the degree of heart rate 8 and 12 h later. A
hormonal response may explain the significantly positive re-
lationship followed by a significantly negative relationship
between nervousness and later heart rate. Specifically, ner-
vousness predicts the release of norepinephrine, and norepi-
nephrine has a positive association with heart rate that quickly
dissipates over approximately the same number of hours
(Mergler & Valcciukas, 1998). This illustrates the utility of
DTVEM in providing a convenient automated framework to
estimate unknown lag structures.

Simulation study

A simulation study was performed to test the perfor-
mance of DTVEM at detecting optimal lag structures
in processes that unfold over diverse time scales. Our
goal was to consider sample size and design conditions
that mirrored empirical processes of varying complexity
(e.g., involving processes unfolding over a single vs.
multiple time scales, with univariate vs. multivariate da-
ta, and complete vs. missing data).

First, we chose one of the most common AR struc-
tures in the behavioral sciences, an AR model of order
1 with two sample size configurations: (la) 7 = 100, N
= 1, a configuration commonly utilized in the time se-
ries literature to evaluate finite-sample performance of
statistical approaches; and (1b) 7 = 14, N = 100, as
commonly seen in many ILD studies in psychology
(Armstrong et al., 2010; Beidel, Neal, & Lederer,
1991; Roche et al., 2016; Steger & Frazier, 2005).
Second, we simulated a complex AR structure with
sharp shifts using a seasonal autoregressive integrated
moving average (SARIMA; with N = 100, T = 14)
(Box & Jenkins, 1976; Box et al., 2013; Brockwell &
Davis, 2002; Reinsel, 2003).

Third, we wanted to test a typical multivariate case (N =
159, T = 170) that mirrored the irregular measurement inter-
vals and complex lag structure and found in the empirical
example. Our goal was to evaluate the performance of the
DTVEM in recovering complex group-based, multivariate,
lag structure using multiple-subject data. This simulation
study served to extend the results from previous simulation
studies in which researchers compared inferential resul