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Using Digital Phenotyping to Accurately Detect
Depression Severity

Nicholas C. Jacobson, MS, Hilary Weingarden, PhD, and Sabine Wilhelm, PhD

Abstract: Development of digital biomarkers holds promise for enabling scal-
able, time-sensitive, and cost-effective strategies to monitor symptom severity
among thosewith major depressive disorder (MDD). The current study examined
the use of passive movement and light data from wearable devices to assess de-
pression severity in 15 patients with MDD. Using over 1 week of movement
data, we were able to significantly assess depression severity with high preci-
sion for self-reported (r = 0.855; 95% confidence interval [CI], 0.610–0.950;
p = 4.95 � 10−5) and clinician-rated (r = 0.604; 95% CI, 0.133–0.894; p = 0.017)
symptom severity. Pending replication, the present data suggest that the use of pas-
sive wearable sensors to inform healthcare decisions holds considerable promise.
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R egularly monitoring patients' psychiatric symptoms is essential for
detecting clinical deterioration and initiating timely intervention.

Traditionally, symptom tracking has required repeated completion of
clinician-administered or self-report assessments during in-person
visits—a time-consuming, costly, and burdensome process (Insel,
2017). In recent years, researchers have increasingly called for the de-
velopment of digital phenotyping tools as low-burden, scalable aids
to symptom monitoring (Insel, 2017; Onnela and Rauch, 2016;
Torous et al., 2016). Digital phenotyping is the “moment-by-moment
quantification of the individual-level human phenotype in situ, using
data from personal digital devices such as smartphones” (Onnela and
Rauch, 2016). That is, digital phenotyping involves the use of unobtru-
sive, technology-based sensors to continuously collect objective and
temporally sensitive data about individuals, to make health inferences.
Given the widespread adoption of smartphones, now owned by 77% of
the US adult population (Pew Research Center, 2018), there is strong
potential for traditional clinical assessments to be meaningfully sup-
plemented by this low-burden, context-rich digital approach (Torous
et al., 2016). Use of digital phenotyping to remotely monitor patients'
symptom severity may be especially beneficial for disorders with an
episodic course, such as major depressive disorder (MDD; American
Psychiatric Association, 2013). Specifically, digital phenotyping may
enable early detection and intervention of sudden increases in severity,
so that clinical deterioration and sequential comorbidity may be
prevented (Jacobson and Newman, 2017).

To date, growing research has focused on digital phenotyping for
the diagnostic assessment of mood disorders (Jacobson et al., 2019),
obtaining strong accuracy in diagnosing major depressive episodes
using GPS and call log data (for a review, see Bourla et al., 2018a).
However, less work has focused on honing passive assessment of de-
pression severity (Mohr et al., 2017). Moreover, previous studies exam-
ining digital phenotyping of depression severity have yielded mixed

results (Rohani et al., 2018), and most have yielded small associations
between passive data and self-reported or clinician-assessed mood
(Pratap et al., 2018). Thus, there is a need for additional work focused
on digital phenotyping for the assessment of depression severity.

To build on this preliminary yet promising research, we analyzed
public-use movement and light exposure data (Tonon et al., 2017) over
1 week in 15 patients with clinician-diagnosed MDD. (Note that was
not registered as a clinical study, and instead represents a secondary ob-
jective of the data.) Researchers have proposed that movement and light
data could be especially relevant for detecting features of mood disor-
ders, as these data may correspond with behavioral patterns such as dis-
turbances in energy, psychomotor agitation or retardation, and sleep
disturbances that characterize mood episodes (Krane-Gartiser et al.,
2017; Tonon et al., 2017). We hypothesized that these data could be
used to accurately assess current depression severity.

METHODS

Participants
Fifteen outpatients (87% female, MAge = 47.60, SDAge = 10.45)

were recruited from the Mood Disorders Program of Porto Alegre Clin-
ical Hospital. Based on the Hamilton Depression Inventory (HAM-D),
symptom severity was very severe in most patients (66%). All patients
were taking either selective serotonin reuptake inhibitor or tricyclic
antidepressants. The authors assert that all procedures contributing
to this work comply with the ethical standards of the relevant national
and institutional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2008. All procedures involving
patients were approved by the Research Ethics Committee of the Porto
Alegre Clinical Hospital (HCPA, protocol number 11–0456GPPG/HCPA)
(Tonon et al., 2017). Written informed consent was obtained from all pa-
tients following a complete description of the study (Tonon et al., 2017).

Clinical Assessments
Psychiatrists served as independent evaluators and confirmed

the diagnosis of MDD using the Mini-International Neuropsychiatric
Interview (M.I.N.I. 5.0), Brazilian Portuguese Version. The self-report
Beck Depression Inventory-II (BDI-II) and clinician-administered
HAM-D were used to assess depression severity.

Actigraphy
Similar to an actigraphy study from a large nationally represen-

tative sample (Loprinzi and Cardinal, 2011), patients wore actigraphs
(Actiwatch-L) for 1 week, which recorded continuous movements
(≥0.01 g) and ambient light exposure in lux every 15 minutes.

Analyses
We created digital biomarkers by applying square root, square,

and log transformations to light and actigraphy data (e.g., oscillations
and peak values during daytime and nighttime intervals; Tonon et al.,
2017). We created biomarkers without reliance on study-specific infor-
mation (e.g., not tied to the particular day within the study), so that fea-
tures can be generalized to new samples. Subsequently, we used the
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extracted digital biomarkers to assess BDI-II and HAM-D scores via
extreme gradient boosting (“xgboost”), a high-precision, tree-based
boosting algorithm, which is a form of machine learning. We applied
leave-one-out cross-validation (LOOCV) and a permutation test to con-
trol for overfitting (Friedman et al., 2001; Ojala andGarriga, 2010). Pri-
mary outcomes were the correlations between predicted and observed
depression severity scores. Note that as a sensitivity test we also com-
puted the partial correlation coefficients after controlling for sex and
age (the only demographic/patient characteristics available).

RESULTS
The correlation between predicted and observed depression se-

verity values was very strong using observed BDI-II scores (r =
0.855; 95% confidence interval [CI], 0.610–0.950; p = 4.95 � 10−5),
and it was strong using observed HAM-D scores (r = 0.604; 95% CI,
0.133–0.894; p = 0.017; see Fig. 1 and Fig. 2). Results remained signif-
icant after controlling for the false discovery rate using a permutation
test. After controlling for sex and age, the association of the predicted
and observed depression severity values remained very strong using
observed BDI-II scores (r = 0.907; 95% CI, 0.737–0.969; p = 1.87 �
10−5), and remained strong using observed HAM-D scores (r =
0.577; 95% CI, 0.092–0.841; p = 0.039).

DISCUSSION
The present research demonstrates that passive movement and

light data collected for 1 week in a sample of outpatients with MDD
can be used to accurately assess both self-reported and clinician-rated
depression severity. In fact, although most prior research has obtained
null to weak relationships between digital biomarkers and depression

severity (Pratap et al., 2018), the present statistical model had strong
ability to detect depressive symptom severity.

Developing the ability to remotely assess depression severity
with high temporal resolution and low patient burden has strong poten-
tial to enhance traditional assessment. For example, standard in-person
assessments can be supplemented by passive assessment between visits,
potentially allowing for longer time to pass between in-person visits
with a clinician. Passive monitoring can also enable clinicians or con-
nected smartphone-based treatments to intervene with just-in-time sup-
port, if patients' symptoms worsen between visits. In particular, such
tools could be beneficial for risk management (Torous et al., 2018).
Given the early scientific foundation for digital phenotyping tools and
the lack of regulatory oversight, Torous and Roberts (2017) suggest
that, at present, digital phenotyping tools should enhance existing clin-
ical methods rather than replacing them entirely. Moreover, research by
Bourla et al. (2018b) shows that psychiatrists have hesitation about the
potential utility, usability, reliability, and risk (in particular, legal risk)
related to digital phenotyping tools. Thus, in order for these tools to
have maximal impact, barriers to mental health provider adoption must
be addressed (e.g., with education).

In addition to the strong correlations obtained, it is notable that
the current sample spanned patients with high symptom severity, sug-
gesting that using digital phenotyping to detect symptom severity in de-
pression may be helpful even when severity is particularly high. The
present study also had several limitations that should be considered.
First, movement and light data were collected for a short period. Al-
though it is notable that robust results can be obtained in 1 week, data
collection over longer periods will likely yield more reliable findings.
Second, because all patients were medicated and the medication type
was not provided in the public use data, we were unable to account
for the impact of medication status on psychomotor movements. In

FIGURE 1. This graph depicts the observed and predicted z-scores from the BDI-II.
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addition, our samplewas small. Although the current application is lim-
ited to 15 outpatients, a large number of data points were utilized to
build digital biomarkers incorporated into statistical models. Moreover,
the use of LOOCV and permutation tests suggests that results are not
due simply to overfitting of data (Friedman et al., 2001; Ojala and
Garriga, 2010). Taken together, results are promising, yet preliminary,
and require replication in a larger, independent sample.

CONCLUSIONS
Initial results suggest that incorporating continuous, objective,

and unobtrusive measures of depression severity into patient manage-
ment may reduce clinician reliance on higher burden (e.g., clinician-ad-
ministered) assessments. Digital phenotyping may in turn enable
scalable, unobtrusive, early detection of risk and just-in-time interven-
tions aimed at lowering the impact of depression.
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