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Handling Missing Data in the Modeling of Intensive
Longitudinal Data

Linying Ji,1 Sy-Miin Chow,1 Alice C. Schermerhorn, 2 Nicholas C. Jacobson,1 and E. Mark Cummings3
1The Pennsylvania State University

2The University of Vermont
3The University of Notre Dame

Myriad approaches for handling missing data exist in the literature. However, few studies have
investigated the tenability and utility of these approaches when usedwith intensive longitudinal data.
In this study, we compare and illustrate two multiple imputation (MI) approaches for coping with
missingness in fitting multivariate time-series models under different missing data mechanisms.
They include a full MI approach, in which all dependent variables and covariates are imputed
simultaneously, and a partial MI approach, in which missing covariates are imputed with MI,
whereas missingness in the dependent variables is handled via full information maximum likelihood
estimation. We found that under correctly specified models, partial MI produces the best overall
estimation results. We discuss the strengths and limitations of the two MI approaches, and demon-
strate their use with an empirical data set in which children’s influences on parental conflicts are
modeled as covariates over the course of 15 days (Schermerhorn, Chow, & Cummings, 2010).

Keywords: multiple imputation, missing data, multivariate time-series model

With new advances in statistical modeling techniques as well
as data collection techniques, intensive longitudinal studies are
becoming increasingly popular in the behavioral and social
sciences to capture nuanced intra-individual changes as well as
interindividual differences in intra-individual change. These
designs also provide a renewed way of studying interrelations
among change processes and the possible antecedents and
determinants of interindividual differences in the change pro-
cesses (Nesselroade & Baltes, 1979). Nevertheless, such inten-
sive assessments often increase participant burden and
consequently the likelihood of missing data due to participant
noncompliance. Missing data also frequently arises within
popular study designs. For instance, with event-contingent
study designs, participants are only instructed to provide
responses when a predefined event occurs, thus resulting in
irregularly spaced data and substantial missingness in the data
when used with discrete-time or regularly spaced models.

Determining appropriate responses to handle missing data
requires knowledge of the three types of missing data mechan-
isms (Rubin, 1976), namely, missing completely at random
(MCAR),missing at random (MAR), and notmissing at random
(NMAR). When missingness does not depend on any data,
either observed or missing, it is defined as MCAR. MAR is
delineated bymissingness being related to the observed data, but
not on the missing data (Fahrenberg & Myrtek, 2001). In con-
trast, NMAR refers to a situation when missingness depends on
the value that would have been observed, but is currently miss-
ing. Appropriately responding to these different conditions is
important as cross-sectional research has shown that inappropri-
ately handling these various types of missingness leads to esti-
mation problems, including bias in parameter point (Allison,
2003; Jones, 1996) and standard error estimates (Glasser,
1964), and reduction in power (Afifi&Elashoff, 1966), particu-
larly in the case of NMAR.

Although extensive research has shown that missingness can
cause bias within cross-sectional data, the impact of missingness
on model estimation may be compounded when not accounted
for in the estimation of intensive longitudinal data, given the
time dependencies in the estimation. For instance, list-wise
deletion, in which the entire observation would be dropped if
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any value of the variables is missing, is the default method of
handling missing data in many software packages. However,
list-wise deletion of intensive longitudinal data would alter the
true time intervals between data points, resulting in bias para-
meter estimates (S. Liu & Molenaar, 2014) and low power.
Additionally, most standard missing data handling tools were
developed to handle missingness in cross-sectional data or long-
itudinal panel data (Eekhout et al., 2015; Graham, 2009;
Landrum & Becker, 2001; M. Liu, Wei, & Zhang, 2006;
Nakai & Ke, 2011; Wood, White, Hillsdon, & Carpenter,
2004). Given the increasing popularity of multivariate intensive
longitudinal data analysis, more work needs to be done to
examine ways to handle missing data in both dependent and
covariate variables in the context of multivariate, multi-subject
intensive longitudinal data under all three types of missing data
mechanisms. We seek to fill this gap in the present article.

To motivate the missing data procedures considered in this
article, we first describe an empirical example in which in fitting
a multivariate, multi-subject time-series model, we face miss-
ingness in two time-varying covariates with the unknown miss-
ing data mechanism, while the missingness in the dependent
variables of interest is likely MAR or NMAR. We then provide
a brief review of the basic characteristics of the FIML and MI
methods as well as the necessary adaptations when used to
handle missingness in intensive longitudinal data.

MOTIVATING EXAMPLE

The current study was inspired by a previously published
empirical study that explored the dynamics of inter-parental
emotion states and behaviors at the ends of conflicts and asso-
ciations with child emotions and behaviors during conflicts
(Schermerhorn, Chow, & Cummings, 2010). Longitudinal
data were collected from 111 cohabiting couples with a child
of 8–16 years of age over 15 days. An event-contingent design
was adopted in which the parents were asked to respond when-
ever or shortly after a conflict arose. In particular, the parents
were asked to rate their own as well as their children’s emotional
states and behaviors at each conflict. To analyze over-time and
lagged dependencies in the couples’ dynamics and possible
associations with child-related variable, Schermerhorn et al.
(2010) considered the following model:

wit
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� �
¼

aw!w bh!w

bw!h ah!h

� �
wi;t�1

hi;t�1

� �
þ cx1!w dx2!w
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eh;i;t
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0
0

� �
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σ2ew σewh
σewh σ2eh
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where wit and hit represent the emotional rating, such as
positive/negative emotion or conflict resolution, of wife and

husband, respectively, from family i at the end of the tth
conflict (i ¼ 1, . . . , n; t ¼ 1, . . . , T ). The terms ew;i;t and
eh;i;t are the residuals for wife and husband not accounted
for by the hypothesized model, assumed to be multivariate
normally distributed with zero means, variances σ2ew and σ2eh ,
respectively, and covariance σewh . The hypothesized model
is a vector autoregressive (VAR) model of order 1 with
covariates, in which the dependent variables at the current
time point are predicted by the dependent variables at the
immediately preceding time point (i.e., a lag of 1). In the
present context, the emotional states and conflict resolution
behavior of each spouse at the end of the tth conflict were
posited to be influenced by their own emotional states and
resolution behavior at the t � 1th conflict, the strengths of
which are captured in the auto-regression parameters, aw!w

and ah!h. In addition, each person’s previous emotional
states and resolution behavior at the previous conflict are
also assumed to affect the partner’s emotional state and
resolution behavior at the tth conflict, as governed by the
cross-regression parameters, bh!w and bw!h. Two covariates
are included in the dynamic model. The covariate, x1, repre-
sents a child aggregate score on agentic behavior in the ith
family, which includes actions such as helping out, taking
sides, comforting the parents, and trying to make peace. The
other covariate, x2, is an aggregate measure of the child’s
negative emotions and dysregulated behaviors, as averaged
across actions such as anger, sadness, fear, as well as mis-
behaving, yelling at the parents, and aggression.

In this empirical study, a large portion (67% for all child-
related variables) of the child-related covariates was missing
because the children were not present when their parents
were having conflicts (Schermerhorn et al., 2010). To han-
dle the missingness, the authors previously recoded the
child-related covariates from sum scores (ranging from 0
to 10) into dummy variable such that a child’s value on each
covariate was coded as 0 both when the child did not dis-
play the behavior during the conflict and when the child was
“missing” (i.e., not present at the conflict); each of the two
covariates was coded as 1 when the child showed any level
of that behavior. In other words, occasions on which the
child was absent were treated to be the same as the occa-
sions on which the child was present but did not display any
of the specified actions (i.e., agentic behavior and negativ-
ity). This coding scheme has three primary drawbacks: (1)
the data blurs the level of a child’s influence with presence
or absence of the data, obscuring the ability to make mean-
ing of the data; (2) it discounts potential effects of different
levels of the child-related variables on dynamics at the
family level, and (3) this data mechanism may be inap-
propriate as both the dependent and child-related covariates
may be NMAR (e.g., the couples might be especially careful
in ensuring that the child was absent when they anticipated
discussing highly stress-provoking topics). Motivated by
these empirical concerns, our goal in this study is to
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evaluate and compare the previous modeling results with
new results obtained using two MI approaches we adapted
for use with intensive longitudinal data, to be described in
the following section.

Methods for Handling Missing Data and Issues

To understand our choices of missing data handling meth-
ods, a brief review of the contemporary methods of handling
missing data and issues is in order. List-wise deletion, or
complete case analysis, is perhaps the most commonly used
method in handling missing data. It is also the default
method in most statistical software packages (Ibrahim,
Chen, Lipsitz, & Herring, 2005). With this method, only
those subjects whose data are completely observed are
included in the analysis. Model fitting procedures would
be performed as if the data set after the removal of list-
wise missingness is the complete data set. In the context of
cross-sectional models, parameter point estimates are
usually unbiased with list-wise deletion if the missingness
occurs completely at random. However, with fewer observa-
tions in the data set, the standard error estimates may be
biased, and power may also be reduced. More importantly,
if the list-wise deletion method is applied to longitudinal
data, the time intervals between observations will be incor-
rectly altered, which may result in biased point and standard
error estimates.

Awidely implemented approach to handling missing data is
to use pattern-mixture models. Pattern-mixture models specify:
PðY ;R X Þ ¼ PðYj jR;X ÞPðRjX Þ, where Y represents the
dependent variable; R represents the missing data indicator
matrix with entries consisting of 0s and 1s, corresponding to
cases for which missingness is absent and present, respectively;
and X represents covariates. With this method, the observed
data depend on (are conditional on) the missing data patterns
embedded in R, and R is postulated to depend only on the
covariates, X (Little, 1993). Thus, a model is fit to observed
data as grouped by missing data patterns, resulting in one set of
parameter estimates for each group. In some applications, those
parameter estimates are averaged (or weighted averaged) over
groups to obtain the overall parameter estimates for all observed
data, and some covariates of choice, i.e., X , are used to predict
“membership” in the different groups of missing data patterns
(Hedeker & Gibbons, 1997). Even though this method is based
on a very intuitive way of decomposing PðY ;RjX Þ and is very
popular in structural equationmodeling (Allison, 1987;Muthén,
Kaplan, & Hollis, 1987), latent growth structural equation mod-
els (McArdle & Hamagami, 1992), and the random-effects
literature (Hedeker & Gibbons, 1997), it is cumbersome to use
with intensive longitudinal data because they are typically char-
acterized by too many possible missing patterns to model. For
instance, as few as sevenmeasurement occasions of one variable
will generate 128 (27) possible missing data patterns, and the
number of missing data patterns would increase substantially as

the number of measurement time points increases. Therefore, it
is often not practical to use pattern-mixture modeling in inten-
sive longitudinal data analysis.

Data interpolation using splines or other nonparametric
approaches (Chow & Zhang, 2008; De Boor, 1978; Kohn &
Ansley, 1987; S. Liu & Molenaar, 2014; Wahba, 1990; H.
Zhang, 1997) is another commonly adopted approach for hand-
lingmissingness and/or irregularly spaced intensive longitudinal
data for use with discrete-time (equally spaced) dynamicmodels
(Tarvainen, Hiltunen, Ranta-Aho, & Karjalainen, 2004).
Helpful interpolation tools include the na.approx() function in
the zoo package in R (Zeileis & Grothendieck, 2005), which
replaces all the missing values with linearly interpolated data,
and the akima() function in the akima package (Akima, 1970,
1991), which interpolates any specified points between two
observed data points using polynomials up to a cubic degree.
Alternatively, S. Liu and Molenaar (2014) proposed using VAR
models to interpolate missing data in multivariate time-series
data and provided an R program, iVAR, for doing so.

Although practical and easy to implement, these interpola-
tion approaches only take into consideration information from
the times series of dependent variables and do not account for
influences of the covariates. Approaches such as the iVAR are
also confined by other constraints and assumptions, requiring,
for instance, that the time-series process be stationary (i.e., with
statistical properties that do not vary with time), the beginning of
the time series be fully observed, and that the variables to be
imputed conform to a multivariate normal distribution—thus
limiting their utility in handling missingness in non-normal
(e.g., categorical) covariates. Additionally, all these interpolation
methods generate only one interpolated value for each missing
observation; the interpolated data set is used in subsequent
model fitting as if it were fully observed. As such, these proce-
dures do not account for the uncertainty associated with the
interpolated data, and may lead to underestimation of the stan-
dard errors. Finally, although not explicitly stated so, interpolat-
ing missing data based on information from the observed data
assumes that the missing data mechanism can be adequately
characterized as MCAR or MAR, and may not work under
conditions of NMAR.

Other well-known methods for dealing with missing
data include full-information maximum likelihood
(FIML) and multiple imputation (MI) (Collins, Schafer,
& Kam, 2001). Both methods have been shown to pro-
duce consistent estimates under certain conditions (i.e.
MAR) for regression models (Thoemmes & Rose, 2014),
but most of the work was targeted toward cross-sectional
data (Allison, 2002; Horton & Kleinman, 2007; Ibrahim,
1990; Ibrahim et al., 2005; Little & Rubin, 2014; Schafer,
1997). S. Liu and Molenaar (2014) performed some com-
parisons of one possible MI approach and the iVAR
approach in the context of time-series models and showed
that the latter outperformed the former by a large margin.
However, the specific MI procedure they considered did
not take into account lagged information in imputing the
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missing data, thus bypassing key information on which
one can readily capitalize in the imputation process; they
also did not compare the approaches considered under
NMAR—a condition under which MI methods may have
some advantages over methods such as FIML. In the
present article, we focus on comparing FIML and MI
methods that are specifically adapted to tailor to charac-
teristics of longitudinal data, especially intensive longitu-
dinal data.

FIML

The FIML approach essentially handles missingness by
performing parameter optimization using a raw data like-
lihood function constructed based on only the observed
data (Arbuckle, 1996). In fitting models for intensive
longitudinal data, the state-space framework provides a
convenient platform for specifying any linear discrete-
time longitudinal or dynamic model. The associated raw
data likelihood function, often termed the prediction error
decomposition function, can then be constructed using the
observed data to perform FIML estimation (Chow, Ho,
Hamaker, & Dolan, 2010; Harvey, 2001). The associated
estimation procedures have been implemented in
packages such as mkfm6 (Dolan, 2002), the SS fpack
library in Ox (Koopman, Shephard, & Doornik, 1999),
and the KFAS library in R (Helske, 2016). FIML remains
one of the “gold standard” approaches for handling miss-
ing data in the dependent variables when the model is
correctly specified, the data are MAR or MCAR, and the
likelihood function has a close analytic form. However,
this approach does not handle missingness in the covari-
ates. One possible way to circumvent this problem is to
include the covariates as dependent variables in the
model, in which case the missingness can be handled
via standard FIML estimation. Unfortunately, this method
is not always practically feasible when many covariates
are involved and some of them are non-normal or cate-
gorical in nature (i.e. sex, race). Moreover, in many cases,
it may not be desirable to include covariates as additional
dependent variables in the dynamic model due to the
added computational costs and the fact that the dynamics
of the covariates may not be the focus of direct modeling
interest.

MI

MI, a commonly adopted approach for handling missing-
ness, was first proposed by Rubin (1977), and elaborated in
his work (Rubin, 2004). This method factors out PðY ;RjX Þ
in a way different from the pattern-mixture models, where
PðY ;R X Þ ¼ PðRj jY ;X ÞPðY jX Þ. MI is based on the premise
that in MI, m > 1 versions of multiple imputed data sets are
first created by filling in the missing values using a missing
data model of choice. These data sets are then analyzed as if
they were complete data, using standard complete-data

methods. Parameter estimates across the m imputations are
then pooled for inferential purposes and the corresponding
standard error estimates are adjusted to accommodate
sources of variability both within and across imputations,
thereby providing a way to quantify the missing data uncer-
tainty. This method has the advantage of preserving the
relations of the variables in the data while simultaneously
accounting for the uncertainty about these relations (van
Buuren & Groothuis-Oudshoorn, 2011). It has been widely
applied in cross-sectional survey data (Rubin, 1996) and is
one of the most popular missing data approaches (Allison,
2000; Harel & Zhou, 2007; Rubin, 1996; Schafer &
Graham, 2002; Sinharay, Stern, & Russell, 2001; P.
Zhang, 2003). Even though the underlying missing data
mechanism may or may not conform to the MAR mechan-
ism, inclusion of appropriate auxiliary variables – namely,
observed variables that are not of substantive interest but
may be related to aspects of the missing data mechanism –
helps approximate a MAR scenario. The auxiliary variables
are included in the imputation model only for the purpose of
improving estimates of the missing data, reducing error
variance, and increasing the precision of the parameter
estimates (Thoemmes & Rose, 2014). The validity of
including auxiliary variables has been assessed and proven
both theoretically (Meng, 1994; Rubin, 1996; Schafer,
1997) and through simulation studies (Collins et al., 2001;
van Buuren, Boshuizen, & Knook, 1999).

MI can be implemented with different techniques and soft-
ware programs (e.g., King, Honaker, Joseph, & Scheve, 2001;
Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001;
Schafer, 1999; van Buuren & Groothuis-Oudshoorn, 2011).
An extensive review of statistical computing software for MI
packages for regression models has been provided by Horton
and Lipsitz (2001). In this study, we compare two R packages
that performMI: MICE (van Buuren & Groothuis-Oudshoorn,
2011) and Amelia II (Honaker, King, & Blackwell, 2011). We
provide a brief overview of their operating principles and
imputation models here.

In the MICE package, MI is implemented via a chained
equation approach. With this method, imputations are drawn
by iterating over the conditional densities on a variable-by-
variable basis by means of Markov chain Monte Carlo
(MCMC) techniques (van Buuren & Groothuis-Oudshoorn,
2011). Let Y be the array of all dependent variables of
interest for all individuals, and X be the array of covariates
for all individuals. Let Yobs and Xobs denote the observed
data in the dependent variables and covariates, respectively,
while Y � and X � denote their missing counterparts. θ is a
vector of unknown parameters that completely approximates
the multivariate distribution of Y and X . The ith iteration of
the chained equation (i ¼ 1; . . . ;m) is a Gibbs sampler that
draws successively from

θðiÞ,PðθjYobs;X ði�1ÞÞ

4 JI ET AL.



Y �ðiÞ,PðY jYobs;X ði�1Þ; θ�ðiÞÞ

X �ðiÞ,PðX jX obs; Y ðiÞ; θ�ðiÞÞ (2)

where the draw for the jth missing variable in Y �ðiÞ, Y �ðiÞ
j , is

conditional on all of the other non-missing variables in Yobs,
complete X ði�1Þ with missing covariates filled in with
imputed values from the i� 1th iteration, and draws for

θ�ðiÞ from the ith iteration. In a similar vein, the draw for

the jth missing variable in X �ðiÞ, X �ðiÞ
j , is conditional on all

of the other non-missing variables in X obs, complete Y i with
missing dependent variable values filled in with imputed

values from the ith iteration, and draws for θ�ðiÞ from the
ith iteration. The relations among the variables to be
imputed and the corresponding “predictors” are assumed
to follow an appropriate general or generalized linear
model, depending on the distributional characteristics of
the variables to be imputed (e.g., normal continuous data,
ordinal, nominal). MICE provides considerable flexibility in
customizing imputation models for different data character-
istics and modeling purposes, and extensive graphical sum-
maries of the MCMC process.

Amelia II is an MI program specializing in handling
missingness in time-series data (Honaker & King, 2010;
Honaker et al., 2011). Elements common to many intensive
longitudinal models, such as polynomial time trends and
lagged (previous) occasions of the variables to be imputed,
are among the elements that can be used in the imputation
model. As distinct from MICE, Amelia II performs imputa-
tions by assuming that the variables of interest, denoted
herein as D ¼ Y ;X , are multivariate normally distributed
with mean vector, μ, and covariance matrix, Σ. Thus, unlike
MICE, the parameter vector needed to perform the imputa-
tions, θ, consists only of elements from a multivariate nor-
mal distribution, namely, elements in μ and Σ. Limited
capacity is available for handling non-normal variables
with missingness. That is, nominal, ordinal, and other non-
normal (e.g., skewed) variables are handled by first drawing
continuous-valued imputations from a multivariate normal
distribution, and then performing heuristic transformations
(e.g., square-root and log transformations, taking the con-
tinuous-valued draws as probabilities of success in a multi-
nomial distribution to yield nominal imputed values; for
further details, see Honaker et al., 2011). However, para-
meters that would otherwise define these non-normal dis-
tributions (e.g., the probability of each category in a
multinomial distribution) are not estimated as in MICE.

With some of the simplification described above, Amelia II is
able to gain some computational speed by replacing a full
MCMC algorithm, which has more flexibility in handling a
variety of posterior distributions for Y , X , and θ, with a faster,
bootstrap-based expectation maximization (BEM) algorithm.
The BEM operates as follows. A bootstrap procedure is first

used to draw m samples of size n (the original sample size of Y
and X ) with replacement from the data, D. Each of these boot-
strapped data sets is used in the EM algorithm to obtain updated
estimates of elements in θ. Following the parameter updates,
missing observations in the original data set are then imputed
separately using each of the m sets of parameter estimates from
the EM, resulting in m multiply imputed data sets.

Pooling the estimates across MI replications for
MICE and Amelia II

MICE and Amelia II can both be used to implement MI.
Following the generation of m imputed data sets using either
package, each of the m imputed data sets is then subjected to
the same model fitting procedures as if it were fully
observed, resulting in m sets of parameter estimates from
fitting the model of interest. The m sets of estimates are then
pooled into one final set of parameter estimates using Rubin
(1996)’s pooling procedures. Specifically, the final point
estimates are obtained as the average of the parameter
estimates over the m MI replications as follows:

Posterior mean

of parameter estimates

� �

¼ Average
repeated complete� data

posterior means of parameter estimates

� �
;

The final variances of the parameter estimates are computed as
follows:

Posterior
variance of parameter estimates

� �
¼ Average

repeated complete� data
variances of parameter estimates

� �
þVariance

repeated complete� data
posterior means of parameter estimates

� �
;

from the sum of the average variances of the parameter
estimates over the m imputations and the variances of the
parameter estimates across imputations.

Goals of the Present Article

MICE and Amelia II are two commonly used tools to imple-
ment MI. They have some shared features, but also some key
differences. Amelia II has some built-in modeling features that
make it especially amenable to intensive longitudinal data.
These features are not readily available in the MICE package,
but users may construct their own lagged variables and poly-
nomial time trends to be used in imputing intensive longitu-
dinal data—a variation that has not been considered in
previous studies using MICE for MI purposes (e.g., S. Liu &
Molenaar, 2014) and is one of the key aspects to be evaluated
in the present article. Also as noted, because the imputations in
Amelia II are performed assuming that D is multivariate
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normally distributed and the other parameters involved in
defining other non-normal distributions are not estimated
directly, Amelia II may show some decrements in performance
in cases where the distributions of Y and/or X deviate substan-
tially from normality and the heuristic transformations imple-
mented in Amelia II fail to capture the full range of plausible
values in imputing the missing data – a scenario that may occur
under NMAR conditions. In addition, although both MI and
FIML have been widely applied in handling missing data,
subtle differences between the two and the adaptations needed
to deal with multivariate time series have not been tested in the
presence of different missing data mechanisms, especially
under NMAR.

The goal of this paper is to examine a full MI and a partialMI
approach under different missingness conditions using two MI
packages. Using aVARmodel as the underlyingmodel, we seek
to evaluate the tenability and performance of: (1) a full MI
approach, in which all missing variables are imputed simulta-
neously with MICE or Amelia II; (2) a partial MI approach, in
which MI is only performed on the missing covariates while
missingness in the dependent variables is handled via FIML
estimation; (3) a naive list-wise deletion method. This is fol-
lowed by an empirical demonstration of the different missing
data handling approaches, and a discussion on the strengths and
limitations of these approaches. We end with some practical
guidelines for researchers interested in implementing these MI-
based approaches and provide R code to illustrate their use with
this article.

SIMULATION STUDY

The goal of the simulation study was to compare the perfor-
mance of a full MI and a partial MI approach under different
missingness conditions (MCAR, MAR, and NMAR) for a
multivariate, multi-subject VAR model and using two MI
packages: MICE and Amelia II. In the full MI approach, all
missing variables were imputed simultaneously with MICE
or Amelia II; in the partial MI approach, MI was only
performed on the missing covariates, while missingness in
the dependent variables was handled via FIML estimation.
Results from complete data analysis and a naive list-wise
deletion method for handling the missingness were also
included to provide some baseline comparisons.

Simulation Design

We simulated two conditions with different sample con-
figurations, namely, T ¼ 15, n ¼ 100, and T ¼ 75, n
¼ 100. The fewer measurement occasions in the first
condition were selected to mirror the characteristics of the
empirical study described under the motivating example,
and is similar in sample size configuration to many other
intensive longitudinal studies in the social and behavioral
sciences (e.g., two-week daily diary). The second

condition was selected to provide a longer time-series
comparison to the first condition and, specifically, to
shed light on the effects of different numbers of time
points on parameter and standard error estimation in the
presence of missingness.

The true parameter values of the dynamic model used
in the simulation were set to typical ranges of parameter
values observed in the motivating example as well as
other empirical studies in psychology utilizing variations
of the VAR model (Chow, Hamagami, & Nesselroade,
2007; Chow, Nesselroade, Shifren, & McArdle, 2004).
The values of the model (Equation 1) were set as follows:
aw!w = 0.4, ah!h = 0.3, bh!w = –0.3, bw!h = –0.2,

cx1!w ¼ 0:3; cx1!h ¼ 0:3; dx2!w ¼ �0:5; dx2!h ¼

�0:4; and
σ2ew
σewh σ2eh

� �
¼ 1

0:05 1

� �
:

We were interested in generating both continuous and cate-
gorical time-varying covariates that might be governed by their
own intrinsic dynamics, but for whom the exact nature of the
dynamics was unknown and thus not modeled by the researcher.
To do so, we generated two covariates, x1it and x2it , whose
values depended on two completely observed auxiliary vari-
ables, x3it and x4it . Both x3it and x4it were uniformly distributed
over [−3,3]. The covariate x1it was a binary variable generated
based on a continuous but unobserved time-varying variable,
θit, whose value at time t for child i was obtained as
θit ¼ :8� θi;t�1 þ :4� x4it þ εit; the value of x1it was gener-
ated randomly from a Bernoulli distribution with the probability
of getting a value 1 equals 1

1þexpð�θitÞ . The covariate x2it was a
continuous variable predicted by one of the external variables,
x3, as x2it ¼ :6� x3it þ εit, where ε was distributed as Nð0; :1Þ.

To evaluate the performance of the MI approaches
under different missingness conditions, missing data
were generated following three possible missing data
mechanisms: MCAR, MAR, and NMAR. Across all miss-
ingness conditions, each of the dependent and covariate
variables was designed to have approximately 30% of
missing data to mimic the proportion of missing data
observed in many intensive longitudinal studies (Dunton
et al., 2015; Jacobson, 2015, 2016; Kavanagh et al., 2011;
Okifuji, Bradshaw, Donaldson, & Turk, 2011). Let
rwit ; rhit ; rx1it ; rx2it be vectors of missingness indicators for

the dependent variables and the covariates, respectively,
such that rit=1 if the corresponding variable for person i
at time t is missing and 0 otherwise. Whether the prob-
ability distribution of rit, prðritj:Þ, is conditioned on
observed or unobserved data determines the nature of
the missingness conditions. The most general missing
data model considered was an NMAR model in which
we specified the probability of rit as dependent on
Y ¼ hit;wit, the array of dependent variables, and
X ¼ xj;it; j ¼ 1; . . . ; 4, the array of covariates.
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The missing data models for the dependent variables we
considered are expressed as follows:

logitðrwit ¼ 1jwit; x3it ; x4it Þ ¼ φ0w þ φ1w � wit þ φ2w � x3it þ φ3w � x4it
logitðrhit ¼ 1jhit; x3it ; x4it Þ ¼ φ0h þ φ1h � hit þ φ2h � x3it þ φ3h � x4it ;

(3)

where, under the NMAR condition, the log odds of the depen-
dent variables being missing are functions of the dependent
variables, wit and hit, and the two fully observed external
covariates, x3it and x4it . φ0w and φ0h are the intercept and φ1w –
φ3h are regression coefficients relating different predictors of
missingness to the log odds of missingness. The φ values were
chosen so that the percentages of missingness for the dependent
variables were around 30% for all missingness conditions. This
level ofmissingness is common formany ecological momentary
assessment studies (e.g., Chow et al., 2005; Chow & Zhang,
2013). The range of the φ values was between −1 and .8. This
most general condition, constituted by having nonzero values
for all of the φ parameters, was NMAR because the missingness
of the dependent variables depended not only on the two fully
observed external covariates, but also on the values of the
dependent variables, which might be missing. For instance,
with φ1w ¼ �:8, the lower the value forwit was, the more likely
wit would be missing. Put within the framework of our motivat-
ing example, this might correspond to cases where the wife
might selectively report only the more severe conflict episodes,
while the less-severe ones were dismissed as “petty disagree-
ments” not deserving of further reports.

For the MAR condition, we simply set φ1w and φ1h in
Equation 3 to zero so that the missingness of the dependent
variables was only contingent on the two fully observed external
covariates, x3it and x4it . To simulate aMCAR condition, only the
intercept terms, φ0w and φ0h , were set to be nonzero in themodel.

The missingness mechanisms for the covariates are spe-
cified as follows:

logitðrx1it ¼ 1jwit; hit; x1it ;wit�1; hit�1; x1it�1 ; x3it ; x4it Þ
¼ φ0x1 þ φ1x1 � x1it þ φ2x1 � x1it�1 þ φ3x1 � wit�1

þ φ4x1 � hit�1 þ φ5x1 � wit þ φ6x1 � hit þ φ7x1 � x3it

þ φ8x1 � x4it

(4)

logitðrx2it ¼ 1jwit; hit; x2it ;wit�1; hit�1; x3it ; x4it Þ
¼ φ0x2 þ φ1x2 � x2it þ φ2x2 � wit þ φ3x2 � hit

þ φ4x2 � wit�1 þ φ5x2 � hit�1 þ φ6x2 � x3it

þ φ7x2 � x4it

(5)

Similar to the missingness models for the dependent vari-
ables, the log odds of the covariates being missing are
functions of both observed and unobserved variables under

the NMAR condition. Specifically, the log odds of obser-
ving a missing value in a particular covariate at time t were
conditioned on the values of the dependent variables at both
time t and the previous time point, t � 1; the value of itself
at times t; and the two fully observed external covariates,
x3it and x4it . For x1, the value of itself at t � 1 was also
included as a predictor of the log odds of missingness
because we used an auto-regressive model to generate the
values of x1. φ0x1 and φ0x2 were the intercepts and φ1x1
through φ7x2 were regression coefficients relating different

predictors of missingness to the log odds of missingness.
Values of φs were set so that approximately 30% of the
covariates were missing.

Under the MAR condition, the log odds of observing a
missing value in the dependent variables and covariates
were conditioned on x3it and x4it , both of which were com-
pletely observed external/auxiliary inputs. The values of
φ7x1 , φ8x1 , φ6x2 , and φ7x2 were set at 0.6 and φ0 ¼ �1:1 to

achieve the desired percentage of missingness. For the
MCAR condition, all φ parameters in the missingness mod-
els were set to zero except for the intercepts φ0x1 and φ0x2 . In

that way, the missingness did not depend on any variables
and was considered as completely random. We set both
φ0s = −0.7 to achieve around 30% of missingness.

MI Procedures

We tested three MI approaches in this simulation study: (1)
full MI, where all missing values of the dependent variables
as well as the covariates were imputed with MICE; (2) full
MI with Amelia II; and (3) partial MI, wherein only covari-
ates were imputed with MICE and missingness in the
dependent variables was handled by the FIML procedure.

For both full MI and partial MI, we included all variables,
with or without missing values, as predictors in the imputation
model. This is in line with the general advice of including as
many relevant variables as possible in MI (Collins et al., 2001).
To be specific, when imputation was performed by MICE, both
dependent variables, w and h, lagged dependent variables, both
covariates, x1 and x2, lagged x1, and both fully observed vari-
ables, x3 and x4, were included in the imputation model. With
MICE, we used the default methods to generate the imputed
data set, that is, the predictive mean matching method was used
to impute the values of continuous-valued variables, and the
logistic regression method was used for imputing the values of
binary variables. With Amelia II, we used the same imputation
model as that used in MICE. However, unlike MICE, with
which we had to create the lagged variables by performing the
lagging ourselves, in Amelia II, a lag argument can be invoked
with the MI procedure to create these lagged variables automa-
tically. For the ordinal binary variable in our data set, namely, x1,
where a zero represented the absence of the specified behavior
and a one represented the presence of any level of the specified
behavior, Amelia handled the imputations by first imputing the
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values as if it were continuous, and then translating the con-
tinuously imputed values back into the ordinal categories using
binomial distribution (Honaker et al., 2011). This procedure was
called by specifying the ords argument. Because the true miss-
ingness model is typically unknown in practice and the general
practice inMI is to include as many plausible variables that may
possibly be related to the missing data mechanism, we consid-
ered a more general imputation model than the true missingness
model.

For the full MI approaches, the imputed data set in which
all missing values were filled in with imputed data were used
for model fitting as if there were no missingness. The ML
parameter estimates were obtained by optimizing a log-like-
lihood function, known as the prediction error decomposition
function – computed using by-products of applying the linear
Kalman filter to Equation 1 in state-space form (Chow et al.,
2010; Harvey, 2001). This procedure was performed with a
Fortran-based program, mkfm6 (Dolan, 2002). In addition,
we wrote R wrapper functions to alternate between the MICE
routine for performing MI and the call to mkfm6 to obtain
parameter point estimates and standard error estimates.

For the partial MI procedure, missingness in the depen-
dent variables was handled via FIML by mkfm6 wherein
only the variables that were observed contributed to the
calculation of the prediction error decomposition function
at each time point, while missingness in the covariates were
filled in with the MI method of choice (either via MICE or
Amelia II) prior to model fitting in mkfm6 to circumvent the
inability of standard FIML procedures to handle missing-
ness in categorical covariates. The model fitting procedures
as well as the procedure to pool the parameter estimates
were identical to the full MI approach. In other words, the
full and partial MI procedures are identical in handling
missing covariates. Thus, our key interest in comparing
the full and partial MI procedures was to examine whether
using FIML to handle missing data in the dependent vari-
ables—as implemented in the partial MI approach—
improves dynamic parameter estimates. Because Amelia II
only handles imputation of categorical covariates heuristi-
cally, we only used MICE in handling missingness in the
covariates so we could perform a more targeted comparison
between the partial and full MI approaches in handling
missingness in the dependent variables.

Estimation results of the full MI and partial MI approaches
were compared in the Simulation Results section.

Five imputations were created by calling either the mice
() function in the MICE package or the amelia() function in
the Amelia II package. Increasing the number of imputa-
tions to beyond five did not lead to notable differences in
the imputation and estimation results. Thus, we present only
the results from using five imputed data sets in each Monte
Carlo replication.

In the Appendix, we provide a set of R codes for setting
up the imputation model and performing full or partial MI
with MICE, generating the mkmf6 script to fit the specified

state-space equation, and finally pooling the estimates
across imputed data sets to obtain the final point and stan-
dard error estimates.

Performance Measures

We considered 2 (T ¼ 15 and 75) � 3 (MAR vs. NMAR
vs. MCAR) � 4 (Full MI with MICE, Full MI with Amelia
II, Partial MI using MICE to handle the missingness in the
covariates but FIML to handle the missingness in the depen-
dent variables, and list-wise deletion of cases with mis-
singness) ¼ 24 conditions in our simulation study with n
¼ 100 for all conditions. A total of 500 Monte Carlo
replications were run for each condition. We employed a
range of standard criteria commonly used in simulation
studies to analyze the results of our simulation study. In
particular, to assess the precision of the point estimates, we
computed both the root mean squared errors (RMSEs) and
biases. RMSE for a particular parameter was defined as the
square root of the average squared difference between esti-

mates for that parameter ( bθh) and the true parameter value
(true θ) across Monte Carlo runs

ðRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H

PH
h¼1 ð bθh � true θÞ2

q
Þ. Bias was defined as

the average difference between estimates of that parameter
and the true parameter value across Monte Carlo runs

ðBias ¼ 1
H

PH
h ð bθh � true θÞ. To evaluate the quality of stan-

dard error estimates, we computed difference of standard
error (DSE), which was given by the difference between the
standard deviation of each estimated parameter across Monte
Carlo runs (i.e., the empirical standard error) and the average
standard error estimate for that parameter across Monte Carlo

runs (cSE). In addition, we also compared the quality of the
SE estimates to the “benchmark” standard error estimates
obtained from the full data set by computing DSEfull,
given by the difference between the average standard error
estimates for a particular parameter (across Monte Carlo runs)
obtained using the full data set with no missingness and the
corresponding standard error estimate for that parameter
obtained using any of the four missing data handling methods
considered. Finally, we also calculated power as an index of
positive detection rates and coverage rates as an overall
measure of the quality of both the point and the SE estimates.
Power was defined as the proportion of 95% confidence
intervals that did not contain 0 across the Monte Carlo
replications. Coverage rates were defined as the percentages
of replications whose 95% confidence intervals for the para-
meters included the true parameter values. These empirical
coverage rates help reveal whether the point and SE estimates
collectively yield confidence intervals that provide the correct
levels of coverage probability. Simulation results with power
close to 1.0 and coverage rates close to the nominal rate of
.95 would be considered as ideal.
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SIMULATION RESULTS

Simulation results are summarized in Figures 1–3, and
detailed further in Tables 1–3. All three MI procedures
(Full MI with MICE, Full MI with Amelia II, and Partial

MI with MICE), but not the list-wise deletion procedure,
yielded reasonable point estimates, as indicated by biases
and RMSEs, across all missing data conditions (MCAR,
MAR, and NMAR) and time point conditions (T = 15 and
T = 75) considered in the present study. Increasing the
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FIGURE 1 A comparison of the accuracies of the point estimates: (a) RMSEs for the time-series parameters; (b) biases for the time-series parameters; (c)
RMSEs for the covariate-related parameters; and (d) biases for the covariate-related parameters.
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number of total time points from 15 to 75 did not provide
notable improvements in the accuracy of the point estimates.
Small biases in SEs in comparison to the Monte Carlo SDs
were observed for all simulation conditions, regardless of
missing data handling techniques (see Figure 2a). However,
when compared with SEs obtained using full data, inflation
in SEs was noted with list-wise deletion. All three MI
procedures improved the accuracy of SE estimates (as indi-
cated by the smaller differences between SEs obtained using
imputed data and SEs obtained using full data). DSEfulls
were smaller with larger sample size condition (T = 75) for
all missing data conditions and all missing data handling
procedures (see Figure 2b).

To facilitate the comparisons across missing data hand-
ling approaches, we aggregated the performance measures
by parameter type. Specifically, we evaluated the perfor-
mance measures as aggregated among all time-series para-
meters that govern the dynamics over time (including aw!w,
bh!w, bw!h, ah!h, σ2ew , σ2eh , σewh ), and all the remaining
parameters portraying the associations among the time-vary-
ing covariates and the dependent variables of interest.
Figure 1a shows the RMSEs of all the time-series para-
meters (denoted as dynamic parameters in the figure) and
their corresponding biases are shown in Figure 1b.

The accuracies of the point estimates for time-series
parameters (as indicated by RMSEs and biases) were rea-
sonable for all three MI approaches (full MI with MICE and
Amelia II, and partial MI with MICE), but not for list-wise
deletion, across all missing data and time point conditions
considered in the present study. RMSEs were higher for list-

wise deletion under the MCAR condition than under the
MAR and NMAR conditions. This is because when list-
wise deletion was implemented, the entire record for a time
point was excluded from analysis if any of the dependent
variables or covariates was missing. Under the MAR and
NMAR conditions, missing values were more likely to
occur at the same time point, when certain observed covari-
ates (for MAR) or dependent variables (for NMAR) were at
a higher level, whereas under the MCAR condition, missing
values were more scattered for the four variables considered
in the VAR model. As a result, more records were removed
for the MCAR condition than the MAR and NMAR condi-
tions, which led to more biased parameter point estimates.
This type of “clustering” in missing responses is not uncom-
mon in empirical ecological momentary assessment studies
wherein participants tend to skip responses on multiple
variables simultaneously (e.g., multiple variables in the
same section of a survey, or an entire survey completely)
on weekends, or when they feel too unmotivated to respond
to researchers’ questions. For the same reason, larger infla-
tion of SEs was also noted under the MCAR condition, as
compared with the MAR and NMAR conditions (see
Figure 2b).

As expected, compared with the list-wise deletion
method, all three imputation procedures, including the par-
tial as well as the full MI approaches with MICE and
Amelia II, improved the accuracy of the parameters’ point
estimates across all three conditions, especially for dynamic
parameters. It can be seen from Figure 1a that the RMSEs of
the dynamic parameters with list-wise deletion were
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FIGURE 2 A comparison of the quality of SE estimates: (a) DSEs averaged across all parameter estimates; (b) DSEfulls averaged across all parameter
estimates.
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noticeably larger than those obtained using any other impu-
tation method across all imputation conditions. Even though
differences seemed to be minor with aggregated biases for
dynamic parameters (see Figure 1b), it can be seen from
Tables 1–3 that the biases for each dynamic parameter were
larger with list-wise deletion than all those obtained using
any other MI procedures. This was likely because list-wise
deletion altered the spacing between time points and led to
biased estimates in the dynamic parameters. With MI
approaches, the missing data points were filled in with
imputed data, and the original spacing between the data
points was preserved. Simulation results with regard to the
time-series parameters were very close between full MI with
MICE and full MI with Amelia II across the six conditions.
Partial MI outperformed full MI in terms of RMSEs of the
dynamic parameters across all missing data conditions
(including NMAR), highlighting one advantage of the
FIML method in handling missingness in the dependent
variables in the specific time-series (VAR) model considered
even under conditions where FIML alone has been found to
be inadequate (specifically, under NMAR). Note also that
using the FIML method alone—as opposed to the partial MI
approach considered—would have led to considerable
decrements in performance in the absence of better ways
of handling missingness in the covariates (other than using,
e.g., list-wise deletion).

A closer inspection of the parameter estimates without
aggregation revealed that under MCAR and MAR condi-
tions, the point estimates of the auto-regression parameters
improved more than the cross-regression parameters under
all MI approaches, compared with the estimates obtained
from list-wise deletion in terms of both RMSEs and biases
(see Tables 1 and 2 for MCAR and MAR results). In fact,
under the MCAR and MAR conditions, the RMSEs of the
point estimates of the auto-regression parameters with par-
tial MI almost paralleled those from fitting the model to the
full data. This indicated the relative difficulty in recovering
the cross-regression parameters in comparison to the auto-
regression parameters in the presence of NMAR.

Interestingly, the point estimates for some of the covariate-
related parameters were less biased with list-wise deletion
than those obtained using the other missing data handling
approaches under MAR conditions (see Figure 1c and 1d).
This was the case for the parameters cca!w and cca!h asso-
ciated with the binary covariate (see Table 2). This may be
related to the over-parameterized nature of the imputation
model for the covariates – the overly complex imputation
model for the covariates might have injected too much noise
and uncertainties into the imputed covariate values, creating
slightly higher biases for these parameters under simpler
missing data mechanisms. Under NMAR, the estimates
from the full MI approach with Amelia II were characterized
by distinctly higher biases, surpassing those associated from
all other missing data approaches, including list-wise dele-
tion. One possible reason might be Amelia II’s reliance on

imputation procedures only for multivariate normal variables
and heuristic data-driven transformations to handle the map-
ping of continuous imputed values to ordinary/other catego-
rical responses. Thus, as conjectured, it is not able to handle
imputations of missingness under more complex missingness
mechanisms.

The SE estimates from all missing data approaches closely
mirrored their corresponding empirical (Monte Carlo) SEs
(see Figure 2a). The plot comparing these SE estimates to
those obtained from the fully observed data set (see
Figure 2b) suggested that all three MI approaches produced
SE estimates that more closely mirrored those from the
complete data set than list-wise deletion across all missing
data and sample size conditions. In particular, positive biases
in SE estimates compared to those from the full data set were
observed with list-wise deletion data under all conditions,
especially in the smaller T condition, thus indicating over-
estimation in these SEs with list-wise deletion. A possible
reason might be that list-wise deletion resulted in smaller
sample size, which in turn led to more uncertainty in the
estimates, thus leading to “overestimation” of the SEs com-
pared to variability that existed in the full data. Positive biases
in SE estimates were still observed in the other MI
approaches considered, but to a lesser extent.

Even though the two full MI approaches produced better
point estimates (in terms of biases and RMSEs) and SE
estimates (in terms of biases of the SE estimates) for
dynamic parameters across all conditions, the coverage
rates remained substantially lower than the nominal value
of .95 and close to the coverage rates from using the list-
wise deletion method (see Figure 3a). In contrast, the partial
MI coverage rates almost paralleled those from using com-
pletely observed data. Under MCAR and MAR conditions,
coverage rates for the dynamic parameters were all over .9,
whereas under NMAR conditions, the coverage rate as
averaged across all dynamic parameters was still over .8
for the small sample size condition and around .5 for the
larger sample size condition.

Coverage rates as averaged across all the covariate-
related parameters were satisfactory with list-wise deletion
(see Figure 3b) under MCAR and MAR conditions because
the inflated SE estimates compensated for the biases in point
estimates of the covariates. Unfortunately, none of the three
imputation methods improved the coverage rates associated
with the covariate-related parameters under NMAR condi-
tions. In particular, in the larger sample size condition,
because the SE estimates for all covariate parameters were
very small (approximately 0.02), and all the point estimates
were overestimated by around .1, the coverage for the
covariate-related parameters was close to zero. Slightly bet-
ter coverage rates (around .6) were observed in the smaller
sample size NMAR condition, except for those obtained
using Amelia II, highlighting, again, Amelia II’s more
restricted capacity in handling the imputations, especially
of categorical covariates.
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Low coverage can occur either due to biases in the point
estimates or due to anticonservative SE estimates (i.e., SE
estimates that were too small compared with the true varia-
bility in the parameter estimates). Under both MI
approaches—and especially when full MI was involved—
the model used to impute the missing data was mildly mis-
specified compared with the true missing data model. The
discrepancy was more severe in the NMAR than in the other
missing data conditions, and such discrepancies always
produced some biases in the point estimates. Given that
the quality of the standard error estimates from the MI
approaches (full or partial) remained satisfactory across all
sample size conditions, the poor coverage was more a direct
result of the biases in the point estimates in situations where
mis-specified imputation models were used to impute miss-
ing values. In larger sample size conditions, because the
standard error estimates were also smaller, the coverage
probability can and did in fact differ considerably from the
nominal coverage rate, especially for the full MI approach
compared with the partial MI approach.

With regard to power, for the sample sizes considered in
the current simulation, the power estimates based on the 95%
confidence level were well above .8 for all conditions and
using any of the approaches considered (partial MI, full MI
with MICE and Amelia II, and list-wise deletion methods),
except for the process noise covariance parameter, whose true
value was close to zero. With the MI approaches, the power
estimates for all parameters were very close to 100% across
all conditions. The advantages offered by the MI approaches
in terms of power were more pronounced in conditions with

smaller sample sizes and/or larger percentages of missing-
ness, given the decrements in performance of the list-wise
deletion method under such scenarios.

All else considered, the partial MI approach emerged as
the preferred approach over the full MI approaches and list-
wise deletion based on coverage, accuracy, and precision of
the point estimates, especially those associated with the
dynamic parameters. Our simulation results thus highlight
some lesser-known advantages of the partial MI approach
compared with the other full MI approaches, even under
NMAR for both the covariates and the dependent variables.
Of course, these results are restricted to the situations eval-
uated in the simulation study—that is, the true dynamic
model is known and correctly specified, even though the
missing data mechanisms may range from MCAR to NMAR.

EMPIRICAL ILLUSTRATION

We used the previously published data set of Schermerhorn
et al. (2010) described in the Motivating Example section
to illustrate the missing data handling methods considered
in the simulation study. As noted earlier, the dependent
variables of interest in this example were the husbands’
and wives’ conflict resolution ratings, whereas child aggre-
gate agentic behavior and negativity were used as the time-
varying covariates in the VAR model depicted in Equation
1. The goal of this illustration was to compare the results
based on the missing data methods considered in our
simulation study to the method used in the published
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paper. In particular, Schermerhorn et al. (2010) previously
considered a hybrid FIML approach in which missingness
in the dependent variables was handled by means of FIML,
whereas the covariates were recoded as either 0 or 1, with
1 representing the presence of any level of the specified
behaviors/emotions and 0 representing either the absence
of the child during a particular conflict or the absence of
the specified behaviors/emotions. In other words, missing-
ness in the covariates was handled using MI, as opposed to
being recoded as zero, in the new approaches. Recall that
the full and partial MI approaches differ only in how
missingness in the dependent variables was handled—
namely, via MI and FIML, respectively. However, only
0.4% of the dependent variables were missing. Thus, the
data set, as it stands, does not contain enough missingness
in the dependent variables to warrant a meaningful com-
parison between the full and partial MI approaches. Thus,
for demonstration purposes, we first compared the empiri-
cal modeling results from three approaches using the ori-
ginal data set: (1) using list-wise deletion; (2) full MI
approach using MICE; and (3) FIML with the heuristic
recoding scheme for the covariates considered by
Schermerhorn et al. (2010). We then induced additional
missingness by using a known NMAR mechanism to
probabilistically remove approximately 30% of the depen-
dent variable values from the original data set. Specifically,
we let the probability of missingness to depend on the
value of the dependent variable itself. Model-fitting results
using the original data and those from the new data set
with added non-ignorable missingness were compared.

Under the full MI method, estimation results were
observed to stabilize with approximately 10 imputations,
and increasing the number of imputations further did not
change the corresponding parameter and SE estimates sub-
stantially. All variables we considered as relevant were
included as predictors in the MI model, including husband’s

and wife’s negative emotions after each conflict and after
each previous conflict, husband’s and wife’s positive emo-
tions after each conflict and after each previous conflict,
husband’s and wife’s conflict resolution scores after each
conflict and after each previous conflict, child agentic beha-
vior, child negativity, husband’s and wife’s reported time
length of the interaction, who initiated the problem, whether
the problem was old or new, husband’s and wife’s reported
hostility in marital relations, husband’s and wife’s self-
reported Symptom Checklist-90 depression score, husband’s
and wife’s self-reported depressive symptom scores, hus-
band’s and wife’s reported marital satisfaction scores, and
child age. Among these variables, whether the problem was
new or old and whether husband or wife initiated the pro-
blem were dichotomous variables. The default imputation
methods in the MICE package, namely, predictive mean
matching method for continuous-valued variables and logis-
tic regression method for binary variables, were used to
generate the imputed data sets.

We used mkfm6 to fit the state-space model (Equation 1)
with each of the 10 imputed data sets as if they were fully
observed data. Ten sets of parameter estimates were
obtained and pooled parameter estimates and SE estimates
were calculated using R according to the method described
in Section Methods for Handling Missing Data and Issues.
Aside from the incorporation of alternative missing data
handling techniques for the covariates, other settings (e.g.,
the specified VAR model, the ML estimation algorithm)
were identical to those considered in the original study.
Parameter estimation results are shown in Table 4.

As shown in Table 4, the parameter estimates using the
data re-coding procedure in the published study and the
full MI approach were very close, while the list-wise
deletion method produced substantially different esti-
mates. For the dynamic parameters, the auto-regressive
parameter for wives’ conflict resolution was observed to

TABLE 4
Parameter Estimates for the Empirical Illustration

Original method List-wise deletion Multiple imputation with MICE

Parameter θ̂ SEθ tvalue θ̂ SEθ tvalue θ̂ SEθ tvalue

aw!w −0.091 0.043 −2.116* −0.130 0.086 −1.512 −0.088 0.044 −2.000*
bh!w 0.056 0.043 1.302 0.134 0.085 1.576 0.055 0.043 1.279
bw!h 0.011 0.044 0.250 −0.076 0.089 −0.854 0.013 0.044 0.295
ah!h −0.043 0.043 −1.000 0.034 0.088 0.386 −0.043 0.043 −1.000
cx1!w 0.753 0.215 3.502* 2.311 0.634 3.645* 1.549 0.555 2.791*
dx2!w −0.733 0.166 −4.416* −0.287 0.057 −5.035* −0.506 0.089 −5.685*
cx1!h 0.608 0.218 2.789* 1.470 0.655 2.244* 1.167 0.509 2.293*
dx2!h −0.698 0.168 −4.155* −0.254 0.059 −4.305* −0.429 0.087 −4.931*
σ2ew 7.652 0.233 32.841* 7.319 0.397 18.436* 7.476 0.239 31.280*

σ2eh 7.836 0.239 32.787* 7.805 0.424 18.408* 7.705 0.240 32.104*

σewh 6.688 0.221 30.262* 6.722 0.388 17.325* 6.540 0.223 29.327*

*p < .05
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be statistically significant with both the original re-coding
method and the full MI approach, but not with list-wise
deletion. The significant negative auto-regressive para-
meter indicates that the wife’s conflict resolution score
was influenced by her conflict resolution score at the
end of the immediately preceding conflict, but in the
opposite direction. That is to say, when the wife’s conflict
resolution score was high at the end of one conflict, her
conflict resolution score would tend to be low at the end
of the next conflict. This significant auto-regressive para-
meter was not detected with the list-wise deletion method.
The auto-regressive parameter for husbands was not sig-
nificantly different from zero using any of the three miss-
ing data handling approaches, meaning husband’s conflict
resolution scores were not predictable from his conflict
resolution scores at the preceding time point. No signifi-
cant cross-lagged regression parameters were found using
all the missing data handling methods considered.
Therefore, husbands’ conflict resolution scores were not
predicted by wives’ conflict resolution scores at the end of
immediate preceding time point and vise versa.

All three methods found significant influences of the child-
related covariates on the dependent variables. To be specific,
child agentic behavior was found to predict increases in both
husbands’ and wives’ conflict resolution scores, while child
negativity was associated with decreases in both husbands’
and wives’ conflict resolution scores. Even though all three
methods yielded similar statistically significant findings and
hence conclusions, the magnitudes of the parameter estimates
were different. For instance, we can see from Table 4 that for
child agentic behavior (x1), both the magnitude of the parameter
point estimates and the parameter SE estimates were larger with
MI comparedwith those obtained using the original missingness
recoding method, where child agentic behavior was dichoto-
mously coded. The point estimate obtained under the full MI
approach suggested stronger influence of child agentic behavior
over parents’ emotion states, but also greater uncertainties in the
parameter estimates due to missingness in the child agentic
behavior. The reason for the difference is that the original
method re-coded the child variables in a way that equated
instances with no agentic behavior or negativity to instances
with missing child covariate information. Process noises var-
iance estimates were similar with all three methods.

We then compared these modeling results to those using
the data set with added NMAR missingness in the depen-
dent variables. Consistent with findings from our simulation
study, when we imputed values of the missing dependent
variables, using a slightly mis-specified model with either
partial or full MI, we were able to obtain parameter esti-
mates that were reasonably close to those obtained using the
original data (i.e., with only .4% of missingness in the
dependent variables), especially in comparison to estimates
using list-wise deletion. However, contrary to our simula-
tion results, which showed that partial MI provided more
accurate dynamic parameter estimates than full MI, we did

not observe large differences in the estimation results
between the two approaches. One possible reason was that
for this particular empirical data set, the dynamic parameters
were either nonsignificant or marginally significant. Thus,
our empirical analysis revealed additional factors (e.g., mag-
nitudes or effect sizes of the dynamic parameters) that might
dictate the relative performance of the partial and full MI
approaches. Further investigation is needed to hasten our
understanding of how effect size and its possible interaction
effects with other factors affect the performance of the full
and partial MI approaches.

In sum, the heuristic way of recoding missingness in the
covariates on the associated child behaviors/emotions did
not lead to different substantive conclusions than if the
missingness were handled by means of full MI. However,
using list-wise deletion altered the spacing between succes-
sive observations and greatly attenuated the magnitude of
the autoregressive parameter for wife’s conflict resolution,
leading to (possibly) erroneous conclusions concerning the
(lack of) continuity in the wife’s conflict resolution ratings
from one conflict to the next. The convergence in conclu-
sions from all remaining missing data handling approaches
suggested that incorporating more fine-grained variability
(i.e., aggregate mean scores as opposed to binary responses)
in child agentic and negativity did not yield distinctly dif-
ferent interpretations with regard to children’s roles on their
parents’ conflict resolution. This suggested that the sheer
presence of children’s agentic behavior and negativity was
enough to have an impact on parents’ conflict resolution
regardless of the extent and intensities of the behavior/
emotions.

DISCUSSION

In this study, we illustrated and examined the performance
of partial MI and full MI approaches in the context of
intensive longitudinal data analysis in fitting a bivariate
VAR model with covariates. We evaluated the relative
strengths and limitations of the two approaches in compar-
ison to list-wise deletion under different missingness condi-
tions and number of measurement occasion conditions in a
simulation study. Four main findings emerged. First, con-
sistent with previous findings with cross-sectional data
(Little & Rubin, 2014), doing MI using a mildly mis-speci-
fied imputation model still led to better performance than
list-wise deletion. By retaining the original spacing (e.g., the
correct time intervals) between adjacent observations, both
imputation approaches outperformed list-wise deletion by
yielding smaller biases and RMSEs in the point estimates.
Both MI approaches also performed better than list-wise
deletion in SE estimation under all missingness conditions.
Second, point estimates from the partial MI approach, espe-
cially those associated with the time-series parameters, were
found to have better accuracy, precision, and coverage
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properties in general compared with the full MI approach. In
contrast, the full MI approach was found to yield higher
accuracy in SE estimation, particularly in situations invol-
ving non-ignorable missingness. Both approaches were
found to yield reasonable results in handling percentages
of missingness commonly encountered in empirical applica-
tions. Third, even though the full MI approach yielded more
accurate SE estimates than the partial MI approach under
the NMAR condition, SE estimates with the partial MI
approach improved and became closer to the empirical SE
under this condition with larger T. Finally, larger T did not
help improve the accuracy of the point estimates of the list-
wise deletion approach. For smaller T, the advantages of MI
in improving parameter SE estimates are especially salient.

In our empirical illustration, the key results and conclu-
sions obtained from using the full MI approach with MICE
were consistent with the results reported earlier wherein the
missing covariates were simply recoded as 0. However, list-
wise deletion of observations with missing covariates did
obscure the autoregressive effect in wife’s conflict resolu-
tion, as discrepant from the statistically significant autore-
gressive effect found using the other missing data handling
approaches. Given the (somewhat unusually) small propor-
tion of missingness in the dependent variables (approxi-
mately .4%), we did not find further differences, for
example, between the partial MI and full MI approaches.
However, we suspect more salient differences would emerge
among the approaches in other empirical studies with
slightly more realistic proportions of missingness (e.g.,
30%, as considered in our simulation study). In addition,
the specific empirical study considered in this article has
covariates that may be tallied as sum scores while the child
was present. Thus, it is still plausible to interpret missing-
ness on the covariates as the non-occurrence of the specified
behavior/emotions. In other studies, it may not always be
theoretically plausible to recode the missing values on cov-
ariates as 0.

In general, results from this article demonstrated
advantages of the MI approaches in handling missing
data in intensive longitudinal studies. First, unlike list-
wise deletion, MI approaches preserve the original
observed time intervals, thus leading to more accurate
parameter estimation in time-series models. Meanwhile,
MI also takes into consideration the uncertainty of the
imputed values by assimilating such uncertainty through
the generation of multiple imputed data sets and including
between-imputation variations in parameter estimates in
the overall SE estimates. Second, MI approaches—includ-
ing the full MI and partial MI approaches considered in
the present study—are more flexible from the implemen-
tation and estimation standpoints compared with a full
FIML approach or pattern-mixture modeling. Statistical
packages for implementing MI procedures usually allow
different imputation models to accommodate various data
characteristics. In our simulation study, we included one

continuous variable and one binary variable as the cov-
ariates of the dynamic model, and the estimation results
were reasonable under both MI approaches. The number
of measurement time points is also not a constraint with
MI-based approaches. The two conditions we used in our
simulation study have 15 and 75 time points for four
variables, which would have yielded ð24Þ15 and ð24Þ75
different missingness patterns if pattern-mixture modeling
was used. Clearly, this would pose great computational
challenges. Third, it is easier to include auxiliary vari-
ables with the MI approaches than an FIML approach
(Collins et al., 2001). With MI, it is straightforward to
include as many auxiliary variables as appropriate as part
of the imputation model. In our simulation study, under
the NMAR condition, we included two fully observed
auxiliary variables in the imputation model, resulting in
nine variables in total. The computational time (namely
CPU time) for five imputations was 30 seconds on aver-
age with MICE and 4 seconds on average with Amelia II
(using a PC with 3.60 GHz Intel Quad Core CPU)
(N ¼ 100, T ¼ 75).

Our results helped clarify previous results concerning the
inadequacies of the MI approaches for handling missingness
in intensive longitudinal data in an important way. For
instance, S. Liu and Molenaar (2014) claimed that imputing
missing data in multivariate time series using VAR models
yielded better estimates for the cross-lagged coefficients
than an MI approach they considered. However, their true
model was a time-series model and they did not incorporate
lagged information in the imputation model for their MI
procedure and neither did they include auxiliary variables.
We did not consider the VAR-based imputation approach
presented by S. Liu and Molenaar (2014) because this
approach does not readily handle missingness in categorical
(e.g., binary) covariates without some adaptation. Our view
is that the MI approaches would perform equally well, if not
better, if appropriate lagged dependent variables and auxili-
ary variables are included in the imputation model. Further
studies are needed to verify this claim in cases that do allow
the MI and the VAR-based imputation approaches to be
compared directly.

It is important to point out that auxiliary variables should
be carefully chosen when we perform MI, or biases may
actually increase as opposed to decrease with the inclusion
of auxiliary variable under certain conditions (Thoemmes &
Rose, 2014). Kano (2015) demonstrated mathematically that
including an auxiliary variable would increase estimation
biases in a simple regression model under the following
condition:

ρyr
�� ��< ρyr � ρyxρxr

�� ��;
where ρyr

�� �� represents the absolute value of the correlation
between a dependent variable (y) and a missingness
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indicator (r). ρyxρxr represents the product of the correlation
between an auxiliary variable (x) and the dependent vari-
able, and that between an auxiliary variable and the miss-
ingness indicator. Thus, increased estimation biases might
be observed, for instance, when the auxiliary variable cor-
relates positively with the dependent variable, but the two
variables are correlated with the missing data indicator in
opposite directions. In other words, estimation biases might
emerge if values of the auxiliary and dependent variables
change in the same direction but they contribute to missing-
ness in mutually contradictory ways. Of course, the patterns
of association among dependent variables, auxiliary vari-
ables, and the missingness mechanisms are often much
more complicated in practice than the simple regression
scenario considered by Kano (2015). It is also difficult, if
not impossible, to falsify postulates concerning the nature of
the missingness mechanisms. Thus, it is important to con-
duct sensitivity tests in empirical applications whenever
possible to evaluate if and how inclusion of various auxili-
ary variables may change one’s estimation results
(Thoemmes & Rose, 2014).

In addition to the choices of auxiliary variables to include
in conducting MI, another important decision researchers
need to make is how many replications are needed for the
MI procedures. Rubin (2004) demonstrated theoretically
that three to five imputations would be sufficient under
most realistic circumstances, and this has been used as a
general guidance by many researchers in deciding the num-
ber of imputations to use in empirical applications.
However, with more complicated models and longitudinal
data, some researchers have also proposed using a larger
number of imputations to improve the stability of confi-
dence interval estimation (Royston, 2004), obtain more
accountable conclusions with empirical data (Spratt et al.,
2010), to achieve more reliable model selection results with
longitudinal data (Shen & Chen, 2013), and to improve
power (Graham, Olchowski, & Gilreath, 2007). In the cur-
rent study, we used five replications for the MI procedures
in the simulation study. This appeared sufficient for the
particular settings considered in this study (e.g., power
was close to 100% across all the conditions considered;
biases and other performance measures appeared satisfac-
tory, except for coverage), and increasing the number of
replications to 10 did not affect the results substantially.
However, in other studies involving higher percentages or
more complex patterns of missingness, smaller sample sizes,
and weaker correlations, more number of replications may
be needed (Lu, 2017).

The MICE package also provides functions to support miss-
ing data imputations for hierarchical (multilevel) data. Thus, one
possible extension to the approaches evaluated in the present
article is to use such multilevel functions to account for addi-
tional within-subject correlations among the repeated measures
in the imputation process. However, the multilevel imputation

options inMICE are currently available only for continuous data
(van Buuren & Groothuis-Oudshoorn, 2011), and our simula-
tions included both categorical and continuous covariates.
Because our data generation mechanism was based on a
group-basedmodel that assumes homogeneity in all individuals’
change functions as well as missing data mechanisms, we found
in a preliminary simulation study (not shown due to space
constraints) that using multilevel imputations on only the con-
tinuous covariates did not lead to notable improvements in
estimation quality compared to the approaches considered
here. However, in other scenarios where heterogeneity in the
missing data mechanismmay be expected, using appropriateMI
approaches that do account for multilevel data structures is
critical. This is beyond the scope of the present article, but
warrants more careful examination in future studies.

Admittedly, the results reported in the present study only
pertain to the current model (i.e., bivariate VAR(1) model) and
sample size configurations. Findings of the current study about
the performance of partial MI and full MI may not generalize to
studies involving other sample size configurations. For example,
with higher percentages of missingness (than the 30% consid-
ered in our simulation study), more imputations may be neces-
sary for the MI approaches to achieve stable estimation. Smaller
sample sizes and shorter time series may also affect the results of
the MI approaches. In addition, the two MI approaches consid-
ered in this study are both two-step procedures (i.e., with impu-
tation followed by estimation of the modeling parameters as if
the imputed data were observed). Such two-step procedures
may not be adequate under more complex settings. Thus, further
simulation studies are warranted to investigate the performance
of the partial and full MI approaches under more complicated
models (e.g., clustered data), and in comparison to other one-
step (e.g., Bayesian) approaches that perform the imputation and
parameter estimation simultaneously. Finally, we did not
address the effect of mis-specification of imputation models on
the results from MI in our simulation study. Even though the
missing data mechanism in general is not directly falsifiable,
especially in cases involving non-ignorable missingness, a ser-
iously flawed imputation model that deviates substantially from
the true missing data mechanism will very likely lead to biased
estimates and improper interpretations (Barnard & Meng,
1999). Sensitivity test will be helpful in evaluating the reliability
of MI under different scenarios.

Moving forward, several extensions to the present work are
possible. For instance, it would be of interest to test and evaluate
the performance of the MI approaches with other dynamic
models, such as dynamic models involving latent variables,
categorical dependent variables, and different patterns of asso-
ciation with auxiliary variables that could potentially be used for
MI purposes. Nevertheless, the present work addressed some
practical difficulties that researchers may encounter in handling
missingness in intensive longitudinal data and showed that, with
some adaptations, some of the common approaches for handling
missingness in the dependent variables (specifically, FIML) can
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be combined with approaches for handling missingness in the
covariates to ease computational burden and the need to devise
MI models for missingness in all the variables for a full MI
approach. We also demonstrated how lagged variables may be
incorporated into an MI model to improve the estimation prop-
erties of models for intensive longitudinal data. We hope our
work can help instigate further refinements and extensions of
contemporary missing data handling techniques to better tailor
to characteristics of intensive longitudinal data.
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APPENDIX

R Code for Full/Partial MI, and Pooling Parameter Estimates
# Detailed demonstration of the method, together with simulated data set and
#estimation program, mkfm6 (Dolan, 2002), is available on the website:

#https://quantdev.ssri.psu.edu/resources/handling-missing-data-modeling

#-intensive-longitudinal-data

# In this illustration, y1 and y2 represent the two dependent variables (DV)
# in the VAR model, x1 and x2 represent the covariates (COV).
# Each of them has T = 15 and N = 100, with around 30% of missing data.
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# We also simulated two fully observed variables: ax1 and ax2.

# Data generating model we used follows the VAR model described in the
# paper.

# Read in the simulated data set.
data = read.table(“Simulate Data.txt”)
n = 100

nt = 15

# The first step is to define an imputation model, which includes both DVs,
# COVs, lagged DVs, lagged COVs if necessary, and all other auxiliary
# variables.

#Following steps will create a long/tall format data set with lag one DVs
# and COVs.

#The lagged variables can also be created using R functions of choice, such
# as lag().

#The number of lags to be included in the imputation model depends on
#the order of the assumed true model. For example, if the true model is a
# VAR at order one, only lag one variables are necessary in the imputation
# model.

y1 = data[,1:15]
y2 = data[,16:30]
x1 = data[,31:45]
x2 = data[,46:60]
ax1 = data[,61:75]
ax2 = data[,76:90]
y1.lag1 = cbind(rep(NA,n),y1[,c(1:(nt-1))])
y2.lag1 = cbind(rep(NA,n),y2[,c(1:(nt-1))])
x1.lag1 = cbind(rep(NA,n),x1[,c(1:(nt-1))])
x2.lag1 = cbind(rep(NA,n),x2[,c(1:(nt-1))])
y1.temp = reshape(y1, direction = “long”,varying = list(1:15))
y1.temp = y1.temp[order(y1.temp$id),][,2]
y2.temp = reshape(y2, direction = “long”,varying = list(1:15))
y2.temp = y2.temp[order(y2.temp$id),][,2]
x1.temp = reshape(x1, direction = “long”,varying = list(1:15))
x1.temp = x1.temp[order(x1.temp$id),][,2]
x2.temp = reshape(x2, direction = “long”,varying = list(1:15))
x2.temp = x2.temp[order(x2.temp$id),][,2]
y1.lag1.temp = reshape(y1.lag1, direction = “long”,varying = list(1:15))
y1.lag1.temp = y1.lag1.temp[order(y1.lag1.temp$id),][,2]
y2.lag1.temp = reshape(y2.lag1, direction = “long”,varying = list(1:15))
y2.lag1.temp = y2.lag1.temp[order(y2.lag1.temp$id),][,2]
x1.lag1.temp = reshape(x1.lag1, direction = “long”,varying = list(1:15))
x1.lag1.temp = x1.lag1.temp[order(x1.lag1.temp$id),][,2]
x2.lag1.temp = reshape(x2.lag1, direction = “long”,varying = list(1:15))
x2.lag1.temp = x2.lag1.temp[order(x2.lag1.temp$id),][,2]
ax1.temp = reshape(ax1, direction = “long”,varying = list(1:15))
ax1.temp = ax1.temp[order(ax1.temp$id),][,2]
ax2.temp = reshape(ax2, direction = “long”,varying = list(1:15))
ax2.temp = ax2.temp[order(ax2.temp$id),][,2]
# Note all categorical variables need to be specified using the as.factor
# function.
# In this simulated data set, COV x1 is a categorical variable.
MImodel = data.frame(cbind(y1.temp,y2.temp, x1.temp,x2.temp, y1.lag1.
temp,y2.lag1.temp,x1.lag1.temp,x2.lag1.temp, ax1.temp,ax2.temp))

MImodel[,3] = as.factor(MImodel[,3]) #specify x1 to be categorical
MImodel[,7] = as.factor(MImodel[,7]) #specify x1.lag1 to be categorical

# The next step is to perform imputation using the specified imputation
# model.
# Number of imputation can be specified with the argument “m = “,
# which by default is 5.

library(mice)
m = 5

imp = mice(MImodel,m = m)
# Initial list to store outputs
# Number of parameters estimated in this illustration is 11.
k = 11

# Parameter estimates from each imputation will be stored in matrix qhat.
qhat = matrix(NA, nrow = m,ncol = k)
# Variances covariance matrix of parameter estimates from each imputation
# will be stored in a list u.
u = array(NA,dim = c(k,k,m))

# Perform model fitting with the m imputed data sets.
for (i in 1:m) {

# Retrieve the ith imputed data sets
# data.impute = complete(imp,action = i)
# Arrange data for model fitting procedures as necessary.
# With Full MI, imputed data are used for all DVs and COVs.
# For Partial MI, we keep the missingness in DVs and use imputed data
# for COVs.
# Extract DVs and COVs from imputed data sets.
y1.imp = matrix(data.impute[,1],nrow = n,byrow = TRUE)
y2.imp = matrix(data.impute[,2],nrow = n,byrow = TRUE)
x1.imp = matrix(data.impute[,3],nrow = n,byrow = TRUE)
x2.imp = matrix(data.impute[,4],nrow = n,byrow = TRUE)
# Perform modeling fitting procedures with full or partially imputed
# variables with time series model fitting program of choice. In this
# paper, mkfm6(Dolan, 2002) was used to fit the VAR model.

# We also provided:
# - a R function to write out the data set in mkfm6 format, writemkfm.R;
# - a R function to write mkfm6 model script,compileKFscript.R; and
# - R functions to call mkfm6 through R (for PC users)
# These files are available on the website. To run the functions,
#please make sure all files are saved in the same directory.
# Create a name for new data set
datafile = sprintf(paste(“data%i”,”.txt”,sep = “”),i)
# Create a name for model script
fileKF = sprintf(paste(“mk%i”,”.txt”,sep = “”,collapse = “”),i)
filebat = sprintf(paste(“run%i”,”.bat”,sep = “”,collapse = “”),i)
#ne = 2 number of DVs
temp = cbind(y1.imp, y2.imp, x1.imp, x2.imp)
source(“writemkfm.R”) # function to write a data set in mkfm6 format
writemkfm(temp,ne,nt,datafile)
source(paste(“compileKFscript.R”,sep = “”)) #function to write
#mkfm6 model script
source(paste(“compilebat.R”,sep = “”))
system(sprintf(paste(“run%i”,”.bat”,sep = “”,collapse = “”),i),
wait = TRUE,intern = TRUE)
# Store model fitting results in qhat and u.
pars = scan(“pars.out”)
# program generated parameter point estimates.
qhat[i,] = pars[seq((k*k + 1),length(pars),2)]
# program estimated parameter variance covariance matrix.
u[,,i] = matrix(pars[1:(k*k)],ncol = k)

}
# Finally, pool results from m sets of estimations.
# Calculate average parameter point estimates across m sets of model fitting
# results
qbar <- apply(qhat, 2, mean)
# Calculate pooled standard error estimates
ubar <- apply(u, 1:2, mean)
e <- qhat - matrix(qbar, nrow = m, ncol = k, byrow = TRUE)
b <- (t(e) %*% e)/(m - 1)
vcov <- ubar + (1 + 1/m) * b #vcov is the pooled variance covariance
# matrix for parameter estimates
se = sqrt(diag(vcov))
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