Using Digital Phenotyping to Accurately Detect Depression Severity

Abstract

Development of digital biomarkers holds promise for enabling scalable, time-sensitive, and cost-effective strategies to monitor symptom severity among those with major depressive disorder. The current study examined the use of passive movement and light data from wearable devices to assess depression severity in 15 patients with major depressive disorder. Using over one week of movement data, we were able to significantly assess depression severity with high precision for self-reported (r = 0.855, 95% CI 0.610 to 0.950, p = 4.95x10-5) and clinician-rated (r = 0.604, 95% CI 0.133 to 0.894, p = .017) symptom severity. Pending replication, the present data suggests that the use of passive wearable sensors to inform healthcare decisions holds considerable promise.

Publication
Journal of Nervous and Mental Disease
Date
Links